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ABSTRACT

b,

machine is developed and presented in this study. The spatially oriented tripod

new type of gait and steering algorithm for use by a six-legged walking

follow-the-leader gait is an extension of previous studies of temporal follow-the-
leader gaits, and should prove useful for all-terrain walking vehicles, such as the
Adaptive Suspension Vehicle. Tractor-trailer style steering is introduced as an
effort to tailor steering control for this type of gait. Both gait and steering
algorithms are implemented on a color graphics computer simulation for study

and comparison with other walking algorithms. < --
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I. INTRODUCTION

v It is estimated that nearly half of the Earth’s land surface is inaccessible to
wheeled and tracked vehicles [Ref. 1]. Yet almost all of this same area can be
successfully traversed by animals and man. This great difference in mobility has
motivated research into the creation of a practical legged vehicle or
walking machine.

The advantages of legged locomotion can largely be attributed to the
flexibility offered in leg placement and support. Wheeled vehicles. and to a lesser
extent tracked vehicles. are confined to a more or less continuous. relatively flat
and obstruction free paths along the ground. The leg’s flexibility allows the
utilization of discontinuous support regions on the ground and the adaptation to
terrain slope. A legged vehicle may potentially use obstructions for support as it
climbs over those obstacles which it decides to not simply ignore.

A second advantage of legs involves the means of obtaining traction in soft
soil. A wheel or track creates a depression or rut from which it must continually
work to climb out. Slippage causes the wheel or track spin. possibly digging a
deeper hole. A leg, however. may be lifted vertically out of its depression,

. minimizing the work required. In addition. any back slip caused by the vehicle

stepping pushes up soil behind the foot and improves traction. [Ref. 2|
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The combination of flexible coordination and increased traction provides a
potential for greater speed and less power consumption while operating over rough
and otherwise unsuitable terrain. Other advantages of legged locomotion include
possible improved comfort in ride due to the adaptive nature of legged support on
uneven terrain, the ability to test soil conditions prior to placement of weight on
the legs, and the relatively small footprint left in the soil. The latter may prove
especially important for agricultural work, where the disturbance of crops is to be
minimized, or for military vehicles navigating areas suspected of containing

landmines.

A. GOALS

The purpose of this study is to explore a new type of gait and steering
algorithm for the use of legged walking machines. The gait is a particular type of
tripod gait. which can be considered as an extension of the temporal follow-the-
leader gait [Ref. 3], into the spatial domain. The steering algorithm to be
investigated along with this style of gait borrows from the concept of driving a
wheeled tractor-trailer vehicle. It is believed that this steering algorithm may be
particularly well suited for the fixed foothold position requirements of follow-the-
leader gaits.

The machine chosen as a physical reference for the study is the Adaptive

Suspension Vehicle (ASV). This is a self-contained. six-legged vehicle currently
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being evaluated at the Ohio State University for rough-terrain locomotion. The
ASV is a Defense Advanced Research Projects Agency (DARPA) proof of concept
. project.
A secondary goal is to develop a simulation model with which to study
walking gaits and control algorithms in general for the ASV. This model is «
developed along the general lines of the simulation previously presented by Lee ;
[Ref. 4], incorporating several of his model’s features, including omni-directional
control, foot movement. and body attitude and altitude regulation algorithms. In
addition. this simulation is to have the features of operation in either the new

follow-the-leader tripod gait mode or in Lee’s "forward wave" tripod gait mode.

P

an enhancement of realism with a detailed color graphics display, and a menu

system controlled with a single mouse button.

B. ORGANIZATION )
Chapter II provides a brief overview of the previous work relating to this
study. It includes a discussion of state of the art legged vehicles. tripod follow- y
the-leader gaits, tripod gaits. stability and simulation displays.
A detailed discussion of the ASV simulation problem is presented in Chapter
III. This chapter covers the configuration of the vehicle, the gait and steering
algorithms. the simplifications assumed in the construction of the model, and the

. kinematics involved in making the ASV model walk. The final section in this
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chapter describes the IRIS-2400 simulation hardware and software on which the

model was developed.

The _simulation program’s operation and functions are presented in Chapter
IV. This includes a complete description of the operation of the program controls
and display features. This is followed by a discussion of the means by which
graphics are programmed on the IRIS. and by a description of the organization
and flow of the program and its modules.

Chapter V is a review of the performance of the simulation. It includes a
brief subjective view on the feel of driving in the two modes.

The final chapter summarizes the contributions of this study. It also contains
comments on possible directions for future research. The program code is listed in

the appendix.
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I. SURVEY OF PREVIOUS WORK

A. INTRODUCTION

The last quarter of a century has witnessed intense efforts to build machines
that walk. Difficulties facing researchers include the problems of controlling the
many degrees of freedom necessary in a maneuverable leg. maintaining vehicle
stability, creating energy efficient motion, and adapting the walking motions to
unstructured terrain. With the advent of compact computer technology and
computer-aided simulation and design, serious progress is now being made in
overcoming these problems. [Ref. 5]

Several promising working designs have emerged in the last ten years. Some
of the most prominent include the Perambulating Vehicle II (PVII) at the Tokyo
Institute of Technology, the Carnegie-Mellon University hexapod. the Odetics Inc.
ODEX I, and the Adaptive Suspension Vehicle (ASV) developed at the Ohio
State University.

The PVII is a light-weight laboratory model quadruped. developed in 1980.
It features one of the first pantograph leg constructions designed specifically to
provide simplified leg coordination and energy efficient walking. Using tactile foot
sensors and a microcomputer mounted near the vehicle. the PVII is able to probe

for footholds and maneuver over obstacles. [Ref. 6]
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The hexapod developed at the Carnegie-Mellon l’nive§it)' in 1982 is a self-
contained walking machine large enough to carry its operator. It uses a gasoline
engine to provide power to the legs via a set of hydraulic actuators. The
movements of the individual legs are controlled by a series of passive hydraulic
circuits. A built-in microprocessor interprets the driver’s commands and specifies
the correct series of leg movement patterns to be used. This arrangement frees
the single microprocessor from the need to compute each foot trajectory. [Ref. 7]

The ODEX I is a commercial design introduced in 1983 [Ref. 8]. An
improved version. sometimes referred to as ODEX II, is being developed for near-
term use in nuclear power plants [Ref. 9]. The ODEX series makes use of a
unique circular arrangement of six planar pantograph legs which allow the
vehicles to adjust their profile for negotiation of narrow passages. The ODEX
walking machines are directed through a radio or fiber-optic link from the
operator to an on-board supervisory-level microprocessor. Each leg is controlled
by a dedicated lower-level microprocessor which receives instructions from the
supervisory level microprocessor. The new ODEX hexapod is also being equipped
with a center-mounted arm for remote manipulation of objects, such as valves, in
hazardous environments. [Ref. §]

The Aga_aptive Suspension Vehicle (Figure 2.1), currently being tested at Ohio
State University. is the first computer-coordinated legged vehicle designed and
built for operation on natural terrain [Ref. 10]. This hexapod walking machine is

completely self-contained. and is capable of carrying the driver. a 500 Ib. internal

12




Figure 2.1 Adaptive Suspension Vehicle
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payload, computer and control circuitry, and power system. in an outdoor

environment. The ASV is the vehicle modeled in this study. A more detailed
description of the ASV follows in Section 3.B.

The remaining sections of this chapter concern gaits used by walking
machines, vehicle steering, the walking machine stability problem, and graphical
representation of the vehicle’s motion. The gait and stability sections are oriented

towards six-legged vehicles such as the ASV.

B. GAIT SELECTION
1. Definitions

A gait is a mode of locomotion for a vehicle or animal distinguished by a
specific pattern of lifting and placing of the feet. Gaits in general may be
described using the event sequence notation introduced by McGhee and Jain [Ref.
11]. The integer ¢ in such a sequence corresponds to the event of placing foot ¢ on
the ground. The lifting of the same foot is represented by the integer i + n,
where n equals the number of legs. For the ASV, legs are numbered on the left
side (1. 3, 5) from the front to the rear, and on the right side (2, 4, 6) in the same
order.

A !friodic gait is one that repeats the lifting and placing pattern. and
thus is represented by one cycle of events. A periodic gait is said to be
nonsingular if no two of its events occur simultaneously. McGhee [Ref. 12]

demonstrated the existence of 39.916.800 possible nonsingular periodic hexapod

14




gaits. The total number of possible hexapod gaits is a much larger and unknown
number [Ref. 3]. This makes the selection of an optimum gait a very difficult
problem. However, this thesis is concerned with a single type of gait sequence,
the tripod sequence. These are singular gaits, in that more than one leg is placed
at a given instant [Ref. 3].

A periodic gait is considered symmetrical when the stepping pattern on
one side of the body is identical to that on the opposite side and separated in time
by exactly one-half of the gait period [Ref. 12]. Symmetry tends to simplify the
required leg coordination algorithms.

The pitch of a gait is the distance between footholds. measured in body
lengths (defined as the distance between the front and rear leg reference
positions). Leg stroke is the linear distance the foot travels with respect to the
body when occupying a particular foothold. Leg stroke is also expressed in terms
of body lengths. f

2. Follow-the-Leader Gaits

A follow—the—leader(FTL) gait is one in which the mid&le and rear legs
on each side of the body step in the foothold locations previously occupied by the
leading legs [Ref. 13]. Creeping FTL gaits (in which at most one leg is in the air
at any time _[Ref. 14]). were first studied by Ozguner, Tsai. and McGhee [Ref. 3].
Using a temporal framework. they narrowed the number of possible FTL creeping

gaits to 30, of which they found five to be symmetrically realizable.
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Expanding to a spatial reference frame greatly increases the number of
gaits in this category. A tripod creeping gait can be defined as one in which the
legs are placed in alternating groups of three, with each group forming a tripod of
support. In the case of the ASV, the two possible tripods are the leg sets (1 4 5)
and (2 3 6).

The possible distinct tripod creeping gaits can be ennumerated using an
approach similar to that in Ozguner et al. [Ref. 3]. Choosing the placement of leg
1 as a reference, evidently there are two possibilities for the relative ordering of
legs 4 and 3, and three possible locations in each sequence for the insertion of the
alternate group of legs. Furthermore, the placing of the alternate leg group (2 3
6) can be accomplished in six distinct ways. Table 2.1 lists the 36 possible
nonsingular placing sequences.

It might first appear strange that the sequence (12364 3) is included
in Table 2.1. However taking two periods together. the sequence becomes
(123645123645), which clearly shows that the placement of the legs
occur in alternating groups of three.

Comparing the entries in Table 2.1 to those in the table of Ozguner et al.,
one can see that none of these sequences are listed in the latter work. This is
because thf_sequences here are not temporally follow-the-leader. Yet they all are

spatial FTL gaits. This can be seen from the gait kinematics of the example

shown in Figure 2.2.




TABLE 2.1. PLACING SEQUENCES FOR TRIPOD CREEPING FTL GAITS |
‘ Gait Placing Tripod 2 "~ Triped 1 Tripod 2 |,
Number Sequence Insertion Subsequence Subsequence |
. Position
1 123645 1 145 236 ]
. 2 126345 1 145 263
3 132645 1 145 326
% 4 136245 1 145 362
5 162345 1 145 623
6 163245 1 145 632
7 123654 1 154 236
8 126354 1 154 263
9 132654 1 154 326
10 136254 | 154 362
11 162354 1 154 623
12 163254 1 154 632
13 142365 2 145 236
14 142635 2 145 263
15 143265 2 145 326
16 143625 2 145 362
17 146235 2 145 623
18 146325 2 145 632
i 19 152364 2 154 236
20 152634 2 154 263
21 153264 2 154 326
22 153624 2 154 362
23 156234 2 154 623
24 156324 2 154 632
25 145236 3 145 236 !
26 145263 3 145 263
27 145326 3 145 326
28 145362 3 145 362
39 145623 3 145 623
30 145632 3 145 632
31 154236 3 154 236
32 - 154263 3 154 263 |
33 154326 3 154 326 !
34 154362 3 154 362 i
35 154623 3 154 623 !
36 154632 3 154 632 ‘
17
i
;
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Figure 2.2 Sequence of Stepping for a Tripod FTL

with Pitch of 1/3 and Continuous Body Motion
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It is possible to alternate body motion with leg placement in the tripod
gait (Figure 2.3). This yields a pattern of movement that is compatible with the
- general notion of a creeping gait [Ref. 3]. It should be noted, however, that while
such a strategy may improve the static stability of the gait [Ref. 3|, the
intermittent body motion increases the leg stroke by a factor of two, which
greatly increases the required working volume of the legs. For this reason, and
also because intermittent body motion slows the average vehicle forward speed,
only the continuous body motion alternative will be considered further in this
thesis.

3. Singular Tripod Gaits

Tripod gaits have proved to provide a good compromise between

stability. maneuverability, and ease of control for the Ohio State University

- Hexapod. the ODEX 1, and the ASV. For this reason tripod gaits were chosen for
this simulation study.

It can be seen that a tripod gait is actually a special limiting case of a

creeping gait, where the time between the placement of individual legs within a

tripod grouping approaches zero. Of the very large (unknown) number of gait

sequences possible. only one can be classified as a singular tripod gait sequence.

All differegxyes among varieties of tripod gaits are therefore a function of

kinematics only.

19

AN \-ra -’d E\!": "'s"-‘-": 4': v .(: .r: Gd



Move legs

All legs
supporting
o & o\o )
o 9 \ o 0
Move body

Move legs

Figure 2.3 Sequence of Stepping for a Tripod FTL with

Pitch of 1/3 and Alternating Body and Leg Motion
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The most frequently used tripod gait is the limiting form of the
forward wave gait, where the duty cycle', 3. approaches 1/2 [Ref. 4,5]. This
study introduces the singular FTL tripod gait. Both of these gaits are
implemented in the walking algorithms of this simulation and are described
further in Chapter III.

It is interesting to note that potentially the fastest forward wave tripod
gait for the ASV is an FTL tripod gait with a pitch of one (Fig. 2.4). This of
course can only be considered a true FTL gait if the feet are assumed to be
dimensionless. In order to prevent the legs from interfering with one another, the
duty cycle might be made slightly less than 1/2. This would momentarily leave
the vehicle with no supporting legs in contact with the ground. It would also
have the disadvantage of not providing sufficient time for possible foothold

searches by the leading legs.

C. STEERING

There are several different approaches to steering currently used by ground
vehicles. The most familiar method is articulated, or automotive style steering
[Ref. 15]. With a steering wheel, accelerator and brake, the driver of an

automobile can directly control the vehicle's turning radius and forward velocity.

-

! The duty cycle is the fraction of the leg cycle used for supporting the body.

S AN Y ‘-&mt‘vﬁf\



/Q—) Transfer Phase

Support Phase

Figure 2.4 Sequence of Stepping for a Tripod FTL

with Pitch of 1 and Continuous Body Motion
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Tracked vehicles. on the other hand, most frequently utilize skid steering. By

operating the sets of tracks at differing rates. the driver controls the turning rate
. and forward velocity of the vehicle.

Tractor-trailers use still another type of steering. Here the driver steers far
forward of the vehicle's center of gravity. The trailer follows along in the path of
the cab. with the steering of its center of gravity lagging behind the steering of
the cab. Furthermore. since the trailer’s wheel axle orientation constrains its
motion, the trailer is restricted to a larger turning radius than the cab is capable
of steering.

Specially designed wheeled vehicles may use omni - directional steering |Ref.
16]. This rarely used method allows the driver to specify turning rate and
velocity in any horizontal direction.

Legged vehicles have historically used similar steering approach;es. McGhee
and Iswandhi [Ref. 17, introduced a two-axis joystick control, analogous to
articulated steering, in which one axis controlled the turning radius and the other

' controlled forward velocity. Orin [Ref. 18], applied three-axis joystick control to
the Ohio State University Hexapod, a small laboratory scale walking vehicle.
This allowed forward. lateral and rotational velocities to be specified by the
driver. providing steering control much like that experienced in a helicopter. The
current ASV uses a similar three-axis joystick control.

Tractor-trailer style steering has not yet been applied to walking vehicles.

This approach, which will be developed in this thesis. should give improved two-
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axis control to the driver for moving through areas of restricted maneuverability.

The driver need only be concerned with maneuvering the front end of the vehicle.
The body of the vehicle will follow along the proven path established by the

footholds used by the front pair of legs.

D. STABILITY

The problem of vehicle balance is a vital concern for walking machines and
has been a focus of many studies. Legged vehicles may maintain their stability
using one of two methods. static balancing {Ref. 19] or dynamic balancing [Ref.
20).

Static stability is attained by maintaining the vertical projection of the
vehicle’s center of gravity within the polygon defined by the supporting legs [Ref.
5]. This method is conceptually simple. It is. however. only valid for stationary
or slow moving vehicles. as it neglects the effects of inertia on stability.

Dynamic balancing is a complex process which places fewer restrictions on
vehicle velocity. The vehicle may be allowed to momentarily move into a
statically unstable configuration, so long as. over time. an adequate base of
support is provided [Ref. 20]. This is the mode of balancing normally used by
man and most vertebrate animals. It remains an extremely complex process.
however. which is difficult to reproduce with legged vehicles.

This model uses only the static criteria for stability. Having the vehicle

limited to reasonable velocities and the six legs placed in alternating tripod
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support patterns ensures a high degree of stability. To guarantee stability. the

usable working volume for each leg is reduced. Figure 2.5 shows a worst case
situation demonstrating that, if the legs are confined to their respective
constrained working volumes, the vertical projection of the center of gravity will
always fall within the triangular pattern formed by the supporting legs. A further

discussion of the constrained working volume can be found in [Ref. 4].

E. GRAPHICS

There is a wide spectrum of available options from which to choose in the
field of graphic displays. Decisions are required as to running the simulation on
monochrome or color monitors, the type and number of dimensions for the
projection, the use of line or solid figure representation, acceptable display
resolution and update time, and whether to employ special hardware options.
State of the art graphics machines also offer possibilities which include shading,
reflectivity of surfaces, and multiple light sources. A compromise must be made
between functionality, visual realism, and cost in order to realize an effective
simulation.

Past simulation models featuring the ASV [Ref. 4.21,22| have concentrated on
basic functionality in the display. The vehicles and terrain were represented by
simplified line drawings on a monochrome monitor. This study attempts to take

advantage of recent developments in special hardware and software for graphics

workstations. in order to create a more realistic and convincing simulation. It is
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Figure 2.5

Constrained Working Volumes

for Adaptive Suspension Vehicle
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simulation. It is believed that the IRIS-2400 [Ref. 23] represents a good
compromise between state of the art quality. cost, processing time and

availability. This system was therefore selected to support the work of this thesis.

F. SUMMARY

This chapter provides background information on previous research leading to
this study. Discussions include a brief survey of examples of the state-of-the-art
walking machines, follow-the-leader and tripod gaits. vehicle steering, and the
question of stability for walking machines. In addition, several concerns are
expressed regarding the graphics displays used to portray the action of the
walking vehicles.

The following chapter contains a detailed statement of the ASV simulation

problem to be solved in this thesis.
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III. DETAILED PROBLEM STATEMENT

A. INTRODUCTION

This chapter is intended as a description of the nature of the simulation
modeling problem. In it is a discussion of the configuration of the ASV, the
mathematics governing its motion, and foothold selection and steering algorithms
for two selected gaits. Also covered are the simplifications deemed necessary in
the creation of the model. The final section includes a brief description of the

modeling facilities.

B. ASV CONFIGURATION

The Adaptive Suspension Vehicle (ASV) is a self-contained, six-legged
walking machine designed to traverse uneven terrain. The operator, sitting in a
cockpit at the front of the vehicle, controls the vehicle either at a supervisory level
by selecting body translational and rotational velocities and allowing the vehicle
to automatically place the feet. or by coordinating the individual legs in a
precision-footing mode. The various control modes are discussed in [Ref. 10].

The vehicle is equipped with an optical scanning rangefinder. mounted above
the cab. fo; -short-range sensing. The laser rangefinder has a range of 10 m and a

field of view of 40 degrees on each side of the body axis, and from 15 to 75 degrees

below the horizontal. [Ref. 10: p.8]




A single 900 cc four-cylinder motorcycle engine is sufficient to power the ASV
over sustained periods of time. This is possible due to the aluminum construction
of the frame and legs. which make the vehicle relatively light (2700 kg) for its size
(3.0 m height, 5.2 m length) [Ref. 10:pp. 8-10]. Power is distributed to eighteen
hydraulic actuator pumps through an energy storage flywheel and a series of
shafts and toothed belts.

Seventeen Intel 86/30 single-board computers are used for onboard processing
and control. One board is dedicated to each leg for motion control and leg sensor
data processing. Four more boards compute stability, check actuator motion
limits, and generate leg commands based on the operator’s control inputs and the
internal terrain model. Two additional boards are used for cockpit displays and
controls. The terrain model is generated by the remaining five single-board
computers using the data gathered from the optical rangefinder. [Ref. 10: pp. 8-
10

The design of the ASV’'s legs features a two-dimensioned pantograph
mounted on a baseplate hinged to the body (Fig. 3.1 and 3.2). This design offers
the advantages of energy efficiency resulting from decoupled ground reaction force
components, and simplicity of control [Ref. 5.6, and 24]. Vertical and horizontal
motion relative to the baseplate are provided by independent actuators mounted

to the plate. Abduction and adduction motion is provided by a third actuator

mounted on the body.
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Figure 3.2 ASV Leg Configuration (2 of 2)
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C. SELECTED WALKING ALGORITHMS

1. Gaits

The model used in this simulation study currently supports two styles of
walking patterns. The first, closely following that used by Lee [Ref. 4] features a
periodic tripod forward wave gait. The second is a periodic tripod
follow—the —leader (FTL) gait [Ref. 3]. Both gaits have unique advantages to
offer the operator.

The great advantage inherent in the forward wave gait lies in the
maneuverability it offers the walking vehicle. The ASV, operating in the forward
wave gait mode, is free to place its feet anywhere within a constrained working
volume during the leg placement phase of the walking cycle [Ref. 4:pp.59-62].
This freedom allows the vehicle great flexibility in range of movement; even to the
point of permitting turning in place.

The price for this freedom of choice for leg placement is that a foothold
must be found and tested for each time a leg is placed on the ground. In rough or
obscured terrain the process of probing and testing could occupy virtually all of
the vehicle’s onboard processing capability. Thus, the vehicle’s speed over ground
could be severely limited.

In this type of terrain the follow-the-leader gait could prove more
advantageous. The follow-the-leader gait requires probing and testing only for

the forward two legs. Since the following legs step precisely where the leading

legs have gone, no further searching is needed. On difficult or dangerous terrain.
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where extensive probing and testing of foothold is required. the FTL gait promises
both greater ground speeds and more security.

. The notable disadvantage of the FTL gait is that its use drastically
constrains the vehicle’s movement. Maneuvers such as sideways stepping and
turning in place are not possible. Turning the vehicle requires a large radius
turning circle, similar to that needed by a tractor pulling a long trailer.

2. Steering

The two walking algorithms utilize different control schemes matching the
unique gait characteristics. The forward wave gait steering mode allows the
operator to independently specify longitudinal velocity. lateral velocity. and
azimuth angle rate (ideally using a three-axis joystick). This allows the operator
to take fully advantage of the gait’s maneuverability. In the absence of a three-

. axis joystick for this simulation, these body translation and rotation rates are
input through three sliding bar controls using a mouse-driven cursor on the
display screen.

The vehicle in the follow-the-leader gait mode. with its inherent

restriction that the body remain between the two parallel foothold tracks, behaves
very much like a tractor and trailer or a wagon. Just as the truck driver steers
the cab allowing the trailer to follow in its path, the ASV operator in this mode
steers by specifying the desired motion of the vehicle steering point. This point

i lies just behind the cockpit, mid-way between the two front legs. along the line

joining the centers of the two working volumes. In the place of a steering wheel
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and acceleration pedal. the operator uses a two-axis joystick (simulated with a
mouse-driven cursor on a steering pad), to specify the desired magnitude and
direction of the cockpit’s relative velocity vector.

The truck and trailer or wagon style steering commands are translated
into desired longitudinal and lateral translation and azimuth rotation rates in
order to maintain compatibility with the wave gait control algorithm in the
program. This is done by first transforming the steering point (vehicle head)
actual position and desired velocity to Earth coordinates, (z,5> Wpp> 2,p) and
(245 Yy 2anp) Tespectively. The desired cockpit position (Zgng Yangs Zang) 1

determined by

Zig = Tap * Tanp © D1 (3.1)
Yang = Yne " Yang ~ A1 (3.2)
20E = hg * Canp " DM (3.3)
where At is the program display time increment. Using the desired cockpit
| position and the centroid of the middle and rear legs’ footholds (in Earth

coordinates) (fh_, /_I;y,f_ﬁz), the desired azimuth angle ¥, is obtained.

| YarE ~ I,
v, =tan | —— (3.4)
e ~ ,hz
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The desired new position of the body’s center (z,¢,y - z2,5)- is then found by

L
T = Ty ;‘cos\lld (3.5)
L .
Ve = Yane ~ ’;S““I’d (3.6)
Z4p = g (3.7)

where L is the length between the center of the working volumes of the forward
and rear legs.
The desired Earth translation rates (z,; and y,;) and Euler azimuth

angle rate (w,,;) are determined as

PRI (3.8)
At

Yag -~ e _ % (3.9)
At

“dE = T2 (3.10)
At

with ¥ being the current azimuth angle. These Earth and Euler rates are then

translated to body rates (z,p, y 5, w,,5) bY

I, =2z,.cos¥ + y sin¥ 3.11
dB dE dE
Yip = Vgpcos¥ — z,.sin¥ (3.12)
“d:8 T “d:E (3'13)
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3. Foothold Selection

As indicated in the above section, a new foothold must be selected for

each leg while operating in the forward wave gait mode. In order to maximize the

foothold’s usefulness it should be placed so that the foot remains in the

constrained working volume during the leg's support phase for a maximum length
of time. The optimal foothold position is determined as the "point on the surface
of the constrained working volume such that [the leg's] support trajectory is
predicted to pass through the foot reference position" [Ref. 4: p.100]. To simplify
the computation, the reference position is taken as the center of the working
volume and a straight line is used to approximate the foot trajectory. A line is

projected opposite to the direction of the predicted foot velocity vector at the

reference point. The intersection of this line and the boundaries of the
constrained working volume is then the desired foot position. Subsequent
variation of the body velocity will alter the supporting foot trajectory, potentially
resulting in a suboptimal foothold.

The follow-the-leader gait foothold selection process is much different.
New footholds for the leading two legs are found by projecting a line along the
velocity vector of the vehicle’s cockpit. At a set distance (1/12 the length
between the forward and rear hip joints), along this line. another line

perpendicular to it is projected. This distance is one half the leg stroke of the

vehicle while operating with a pitch of 1/3 (Figure 2.2).
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The desired foothold is determined by where the second line intersects a line
running through the center of the working volume parallel to the body's
longitudinal axis (Figure 3.3).

As a front leg abandons its current foothold. that position is recorded for
use by the middle leg behind it. In turn, the middle leg foothold positions are
saved for use by the rear legs. Thus, during each complete leg cycle, two new
foothold positions are computed. This compares favorably to the six new

footholds needed while using the forward wave gait.

. REPRODUCED AT GOVERNMENT EXPENSE ,

selected

foothold longitudinal
——————————————— axis of the
working volume

relative heading
L/12

- Xp

Figure 3.3 New Foothold Location
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The current program allows the driver to start operation of the velicle

either using the forward wave gait or the follow-the-leader gait. Once started. the

program must be reset before switching modes.

D. MODELING SIMPLIFICATIONS

There are many simplifying assumptions contained within this model of the
ASV. These simplifications were made largely in an effort to speed the
development of such features as the follow-the-leader gait. However. the program
framework was devised with future work in mind. Thus. wherever possible room
was left for generalization and expansion.

The most notable simplification in the simulation model deals with terrain.
The ground is represented by a smooth, level. checkerboard pattern. Although
the ASV was developed to be able to traverse unstructured terrain. there are no
obstacles or obstructions in the current model. Uneven terrain will require
inclusion of an algorithm for estimating the support plane beneath the vehicle,
foot sensors. and a new terrain display routine. A foothold probe and testing
routine will also be needed.

As a consequence of the use of flat terrain. the constrained working volume
adjustments for uneven terrain {Ref. 4: pp. 109-117] and body regulation plans for

varying slopes [Ref. 4: pp. 87-89] were not required. However. the basic structure

for body attitude and altitude regulation has been retained in the program
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modules of this thesis. Consequently. inclusion of sloped terrain should
necessitate only minor program changes in these areas.

. The model contains only kinematic features of the ASV operation. This
means that there are no limits on vehicle acceleration imposed by the model. In
order to prevent unrealistic performance on the part of the displayed vehicle, a
filter was placed between the commanded inputs and the response of the vehicle.
The kinematics and filter for simulating dynamic constraints are described in the

section below.

E. MODEL KINEMATICS
. The kinematics of the model of the ASV presented here closely follow those
developed in the computer simulation of Lee [Ref. 4]. Body motion is specified in
terms of translation rates along the body’s forward, lateral, and vertical axes (x.
v, and z repectively) and rotation rates around these axes. The driver of the
= vehicle may directly or indirectly control the desired forward and lateral
translation rates and the rotation rate around the vertical axis. The remaining
three degrees of freedom are automatically regulated to maintain a desired body
attitude and altitude with respect to the ground.
Vehicle dynamics are simulated through the use of a simple control filter

inserted between the ordered rates and the actual body rates. As a result the
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body moves with a smooth, exponential transition in response to driver and body

regulator control commands.

In order to realize these filtered body rates. the rates are first converted to
earth coordinate translation rates and body Euler angle rates. Euler integration is
then performed to produce translation distances in earth coordinates and angular
displacement around the three body Euler axes.

1. Coordinate Systems

The ASV model makes use of two coordinate systems, earth (z;. yg. z;)
and body (zg, yg. zg). in its calculations. The earth coordinate system is used
wherever it is required to specify absolute position or velocities of the body, feet.
or terrain. The earth coordinate system is defined such that the zp axis is positive
upward and the unit vectors z;, y, and z; are mutually orthogonal.

The body coordinate system is useful in describing operator control and
the coordination of body and legs. The origin is defined as the center of the main
body section {excluding the cockpit). The zp axis is projected upward through
the top of the body, while the z, axis is forward along the longitudinal axis and
the y, axis is projected to the body’s left. forming the transverse or lateral axis.

Earth coordinates are transformed to body coordinates using the

relationship of equation 3.14.
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Ir Tp
y val

B H B (3.14)
*E ’p

1 i 1

where the position vectors [z, yg, 2. l]T and [zg, yg, 2g. IIT describe the same
point in space in earth and body coordinates respectively and H is a 4 x 4
homogeneous transformation matrix [Ref. 25|. The homogeneous transformation
matrix can be derived by decomposing the transformation into a translation from

the earth coordinate origin and a series of rotations about the Euler axes:
H = szz'TW' TyTe (3.15)

The homogeneous transformation matrix sz represents the translation

4
of the body’s center to its current position (d,, dy, d,). The first rotation about
the body's vertical axis by the azimuth angle ¥ is represented by the matrix T.

The body is then rotated about its new lateral axis by the elevation angle, ®, and

then about the newly formed longitudinal axis by the roll angle. ©.!

! Other notations are sometimes used for these angles. For example, in [Ref. 19}, # signifies
elevation angle and ¢ denotes roll angle.
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The four homogeneous transformation matrices [Ref. 25: p30] are:

100dz *

010d, .
T, = (3.16)
w1001 d,

000 1

cos¥V —sin¥ O
sin¥? cos¥ O

T, = (3.17)
0 0 1

0 0 0

cos® 0 sind® 0O
0 1 0 O

T, = (3.18)
® | -5n® 0 cos® O

0 0 0 1

1 0 0 0
0 cos® sin® 0
(3.19)
0 -8n® cosO® 0
0

0 0 1
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Substituting equations 3.16, 3.17. 3.18, and 3.19 into 3.15 yields:

cosWcos® cosVUsin®Psin®—sinWcos® sinWsin® ~cos¥sinPcosO dz
sinWcos® cosWcosO +sin¥sin®sin® sinWsin®cos®—cosW¥sin® dy

—-8in® cos®Psin® cos®PcosO d .

0 0 0 1

2. Body Regulation

A simple control algorithm is used in this and Lee's model to maintain
the attitude of the vehicle and its height above the ground. The inputs are the
estimated support plane and the plane formed by the body's lateral and
longitudinal axes.

Body attitude regulation is accomplished by rotating the present body

plane towards the desired body plane. The desired plane can be expressed as a

function of the terrain slope and be adjusted to suit the driver®.

The unit vector B, along the rotation axis. (Fig. 3.4) is given by

z“sz'
T
B, = _. = [kz ky kz] (3.21)
|szzD|

where Z; and Z, are the unit normal vectors of the current and desired body

® In the current level terrain model, the desired body plane angle is set equal to zero.
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X

B

Figure 3.4 Rotation Axis and Angle

planes and k, = 0. The rotation angle, v, is given by
4= cos-l(z'B - £p) (3.22)

These values are used in the control function to obtain the rotation rates around
the body’s longitudinal axis, w,. and about its transverse axis w, -
Body altitude is defined as the distance along the body plane’s unit

-

normal from the estimated support plane to the body's center of gravity.



A mapping function similar to that used for the body plane can be used to relate

the desired altitude. hD, to the current terrain slope. h.!

3. Rate Computation

The differential equation describing the simulated dynamics of the control

filter is

i) = -= y(1) (3.23)

where 7 is the time constant of motion and y(t) is difference between the desired
and actual position variable. Integrating both sides of equation 3.10 yields an

exponential response
; (3.24)
The control filter for altitude is then

. 1
o (hp—h). (3.25)
1

Similarly the equatiun producing the attitude control response is

y=-—n (3.26)

¢ In the current model the desired height is set to a constant value
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The rotational vector 7, decomposes into rotation vectors about the forward and

lateral axes. vielding:
w, =~ kv (3.27)
wy =~ k. (3.28)

Velocity is related to acceleration using the same filter. This is

accomplished by letting
v(t) = (1) (3.29)

and substituting into equation 3.23, yielding:
. 1,
(t) = —— z(t). (3.30)
T

The accelerations for the remaining three rates are

1 . .

T(zB commanded ~ *B currcnt) (3.31)
2

1

(yB commanded — YB currcnl) (3.32)
r
2

Ty

S
]
i

“, commanded ~ “: turvent)' (3.33)

Using the Hmear approximation.
Avelocity = Atime-acceleration, (3.34)

the rates are determined by equations 3.35 through 3.37.
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m

At . ]
B new = (IB commanded  TB rurrenl) = T8 current (3.35)
T,
2

At

—(yB commanded ~ YB turrm!) ~ VB current (3.36)

L)

. YB new ~

At

» o . - - . -
Y2 new *'z commanded ~ 'z turrmt) “2 current (3.3t )

Ty

where At is the time increment and 7, is the time constant of motion.

Body positioning in this computer model is achieved by translating the
body center to its proper earth coordinate position and then successively rotating
the body about its vertical. transverse and longitudinal axes. In order to do this.
body rates are first transformed into earth coordinate translation rates and body

Euler angle rates using the method presented by Frank and McGhee [Ref. 19].

1 tan®sin® tan®cos w,

0 cos© sin© w (3.38)

- - O
it

0 sec®sin® secPcosO

Roll, elevation and azimuth angles and translation distances are then found

through simple Euler integration:

-

= Vo~ ¥ Alime. (3.39)
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1. Leg Kinematics
The ASV's pantograph leg contruction yields relatively simple kinematic
and inverse kinematic equations. These equations differ slightly from those .
presented by Lee [Ref. 4]. This can be attributed to the use of more accurate
dimension measurement than those assumed by Lee.
For the front left leg (leg number one) shown in (Fig. 3.1 and 3.2), the

foot position is given by

z, = 5d, + h, (3.40)
y, = (51, ~ 4d,)sin® + l,c0osO ~ h, (3.41)
3, = 1,sin® - (5l; - 4d,)cos® (3.42)

where the hip position (h,. hy. h,) and foot position (2, y,- 5/) are given in body
coordinates. and d,. d,. and © are the joint variables.
The inverse kinematic equations for the joint variable d,. derived from

equation 3.40 is
1
d, = - (z[ - h,). (3.43)
5

Rearranging and squaring both sides of equations 3.41 and 3.42 yields,

a’sin’® - a l,5in@cos® + Ifcosz@ = (y! - hy)2 (3.44)

14sin26‘—' a l,sinBcos® - a’cos’® = (2, - hz)2 (3.45)
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where a = (5/; - 4d,). Solving equations 3.31 and 3.32 gives,

1 2 2 2
dl=——(513—\/(y/-hy) ~:f—l4, (3.46)

- , (3.47)

In addition to the joint parameters, this model requires leg upper (thigh) !
angle, a, the lower leg (shank) angle, 4. and the knee position in body coordinates

(2, ¥;, z,)- The thigh angle is given in terms of joint variables as

2 2 2 2 :

ro d, (4 - (dy )

a = — - tan - cos
2 I, + d, — (3.48) :
L \/(13 = d)) - d !
. :
and the knee position as i
t
. 7, = l,cosa - h, (3.49) :
Y = (lsine  d,)sin® - 1,cos@ + h, (3.50) .
2z = 1,5in® - (l,sina - d,)cos® (3.51) :
t
The knee angle is !
R i
4 = tan | —— (3.32) '
Z, -1

- - e

All ‘six legs of the ASV share similar geometries. The remaining

kinematic and inverse kinematic equations can be obtained from equations 3.40

S Mg == g=

. through 3.52 with appropriate sign changes.
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F. SIMULATION FACILITIES

1. Hardware

The computer simulation presented here is designed to run on either of
the two Silicon Graphics. Inc. IRIS-2400 workstations currently in the computer
graphics laboratory in the Department of Computer Science at the Naval
Postgraduate School. The IRIS (Integrated Raster Imaging System) consists of a
Geometry Pipeline, a general purpose microprocessor. a raster subsystem. a 60Hz
non-interlaced high-resolution RGB display monitor and a keyboard. In addition
each unit has been equipped with two 72 megabyte disk drives, a cartridge tape
unit. a floating point accelerator. and a three-input mouse. The Geometry
Pipeline is a series of ten or twelve custom VLSI chip matrix multipliers. Under
the control of the applications grapiics processor. it performs matrix
transformations. clipping and scaling of coordinates. The output is sent to the
raster subsystem which performs functions such as filling in pixels, shading,
depth-cueing and hidden surface removal.

The first IRIS system is based on a Motorola MC68010 processor with 5
megabytes of CPU memory and a 1024 x 786 x 8 bit display memory. It is also
equipped with a digitizer tablet. The second IRIS system is a more capable
Turbo-240£)._ It is based on a Motorola MC68020 processor and has 4 megabytes
of CPU memory and a 1024 x 768 x 32 bit display memory. An Ethernet network

connects both workstations to two VAX 11/780's and one VVAX 11/750.
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Software

The IRIS Graphics Library contains a large number of graphics
commmands and utilities. This allows the user great fiexibility in the choice of
coordinate systems and display techniques. While the software is written in C.
the graphics commands may be called in C. FORTRAN, Pascal, and Lisp. The

code for the model presented in this study is written exclusively in C.

G. SUMMARY
The previous sections of this chapter outlined the physical constraints.
simplifications. and tools used in the development of this simulation. The next

chapter describes the operation and construction of the actual simulation

program.
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IV. SIMULATION PROGRAM

A. INTRODUCTION

In this chapter the simulation program is presented. The first section consists
of a user’s guide, with complete instructions on how to use each program feature.
The second section introduces the working environment for graphics on the IRIS-
2400. The final section describes the internal operation of the simulation program
and discusses the flow through the major modules. A complete listing of the

program is provided in the appendix.

B. USER'S GUIDE
1. Starting Up

The program walk.¢ is relatively simple to use. It is entirely menu-driven,
with a single mouse button and cursor performing all selection functions. To start
the program, type the command "walk".

Immediately displayed on the monitor is a split screen view of the control
panel and the ASV on its terrain (Fig. 4.1). The right half of the screen featvres
a three-dimensional projection of the ASV on a green and white checkerboard
plane against a blue backdrop. The user's vantage point is fixed relative to the

center of gravity of the vehicle (above and initially to the vehicle's left side). so

that the vehicle will continuously remain in view while walking.
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Figure 4.1 View of Initial Screen
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The left half of the screen contains a two-dimensional representation of
the control panel. Initially it features only the six vellow selection panels of the
main menu on a cyan background.

2. Menus

A menu item is selected by placing the cursor over the corresponding
panel and clicking the middle mouse button. Pressing the button down will cause
the panel beneath the cursor to be highlighted in red, as a potential choice.

\ Releasing the button selects the highlighted menu item. If no changes are desired
in the current menu selection. simply move the cursor to a portion of the screen
outside the menu selection region and release the mouse button. Selected menu
items are highlighted in bright yellow.

3. Forward Wave Gait

In the forward wave gait mode, vehicle velocities are specified in terms of
body axis translation and rotation rates. Three of these rates - longitudinal
velocity, lateral velocity. and yaw rate, are directly cortrollable by the operator.
The rates for the remaining three degrees of freedom are automatically adjusted
by the vehicle in order to maintain proper attitude and altitude. All rates in this
mode are defined with respect to the body’s center of gravity.

Sgl.esting the forward wave gait panel produces a secondary menu
displayed immediately below the main menu (Fig. 4.2). This secondary menu
contains three additional panels for use in specifying the vehicle's body rates. The

panels are operated in the same manner as those in the main menu. To the right
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Figure 4.2 View of Forward Wave Gait Screen

(BN AR AN A A ™ NN A0 O RN YW



of the menu panels are six simulated LED readouts. used for displaying the
magnitude of the curren «nd ordered rates.

Releasing the middle mouse button while the cursor is inside the bounds
of one of the secondary menu panels results in a sliding bar control panel being
displayed on the left edge of the screen (Fig. 4.3). Velocity commands are input
by placing the cursor within the black center region of the bar control area. A
yellow bar level indicator will rise or fall to match the cursor level, indicating the
commanded velocity value. No clicking of the mouse button is required. To set
the commanded input at the desired level, move the cursor to the desired height
and then slide the cursor horizontally until it is outside the center region of the
sliding bar panel. A red bar level indicator displays the current velocity of the
vehicle.

4. Follow-the-Leader Gait

Control while in the follow-the-leader gait mode is achieved by specifying
the desired relative velocity vector of the ASV’s steering point. ‘ The operator, in
essence, points the vector in the direction in which the steering point should
travel, relative to the body longitudinal axis. As stated in the previous chapter,
the steering is very much like that of a long tractor-trailer type of vehicle. The
control algorithm factors in the magnitude of the desired velocity, footholds and

—~— -

current velocity and automatically regulates the body’s motion.
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The follow-the-leader gait control mode is invoked by using the lower left
panel of the main menu. When this panel is selected, a white rectangular control
area appears directly beneath the main menu (Fig. 4.4). If the middle mouse .
button is held down while the cursor is within this region, the cursor controls a
simulated two-axis joystick. The vertical axis represents the magnitude of the
relative velocity vector and the horizontal axis represents the direction. A solid
yellow line is used to indicate the current joystick position, and thus the input
values. The vehicle’s actual relative cockpit velocity vector is indicated by a solid
red line.

5. Status and Warnings

The status menu option exists to provide the operator with numerical
data on leg and body position and movements. Selecting this item causes a
yellow and black display panel to appear below the main menu (Fig. 4.5). -
Featured on this panel are the translation and rotation rates (with respect to the
body axes), the position of the vehicle’s center of gravity (in Earth coordinates).
the vehicle’s orientation (in Euler angles), the walking cycle period, the position of
each foot (in body coordinates) and the angles of various components of the legs.

g The values are updated each display cycle.

During the operation of the vehicle, checks are made on operating
parameters. If a leg become positioned so that the foot is outside its

corresponding constrained working volume, a red warning box is flashed in the

lower left corner of the screen. Similarly, if the walking cycle period becomes too
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Figure 4.5 View of Status Display Screen
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small, a yellow warning box is displayed. In addition to the warning. a
deceleration routine is activated to slow the vehicle until the period comes up to

an acceptable level [Ref. 4: pp. 66-71].

6. Reset and Exit .
The reset option returns all vehicle parameters, including position. to
their original values. This feature was included to save time when making a series
of test runs. The exit option ends the program, clears the screen and returns the

user to the current UNIX shell.

C. GRAPHICS ON THE IRIS-2400

Figures are displayed on the IRIS-2400 by calling a series of short graphics
commands, called primatives. The primatives are interpreted into graphical
displays by the software and special hardware of the IRIS system. These include
commands for specifying color, drawing lines. circles, irregular polygons. and
printing text characters on the screen. There are also a series of primatives
designed to manipulate coordinate transformation matrices for the purpose of
scaling, rotating and translating figures.

A sequence of graphics commands may be grouped into a listing called an
object. This object list may then be conveniently executed using a single call.
Once created. the object list may at any time be edited as desired through the use
of object tags. The object, in essence. functions as a reconfigurable graphics

subroutine.
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Objects and figures in this program are displayed in the reverse order in
which they are called. The last object is overlaid in front (with respect to the
viewer's vantage point), of the previously called objects. An important exception
to this is the treatment of the back face of polygons. The reverse side of a
polygon, in the back face polygon removal mode, is considered transparent and is
automatically removed from the image as a hidden surface by the IRIS hardware.
This feature enables the display of more realistic appearing three-dimensional
objects.

In the double buffer display mode utilized by this program, the special display
memory is divided into two sets of bit plane buffers. As one buffer is having
display data written into it, the other is used to refresh the monitor. Once the
writing is complete, the functions of the buffers are swapped, and a new cycle of
writing commences. This display mode provides for a smooth simultaneous

update of the entire screen.

D. PROGRAM ORGANIZATION

The simulation program can be divided into three general sections;
initialization. simulation loop, and termination. The heart of the program,. the
simulation loop. cycles through an input phase, which serves as the operator's
control interface for the vehicle; the calculation phase. in which the parameters

for the position and orientation of the ASV’s body and legs are determined: and a

display phase. The initialization section performs tasks. such as defining
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coordinate systems and creating object lists. required to start up the loop. The

termination section clears the screen and buffers in preparation for the next IRIS

- user. A flow chart featuring the program’s primary modules is shown in Figure
4.6.

Since the order in which objects are called is critical in this display mode,
special provisions are needed to create a full 360 degree viewing coverage of the
maneuvering vehicle. Specifically, four separate ASV objects lists are created in
the object construction module of the initialization section. Each object has the
vehicle components ordered for proper viewing from one of four viewing
quadrants. The display section therefore needs only to determine from which
quadrant the vehicle is to be viewed and call the appropriate object.

The simulation loop is the dominant part of the code, containing the

. overhelming majority of the program modules. The loop begins with a call to the
driver's command interface module. This module controls the operation and
display of the menu system, the status panel, and the sliding bar and joystick
controls, as well as processing F.T.L. gait steering commands. The organization

of the control module is shown in Figures 4.7 and 4.8.




Initialize &
Make Object Lists

Q

Driver Command
and Display

Reinitialize

Support Plane

Body Rates

Optimal Period

Deceleration

Leg Phase

1

Foot Trajectory

|

Working Volume

1

Display

Clean Up Graphic4

Figure 4.6 Main Simulation Flowchart
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Figure 4.7 Command Interface Module (1 of 2)
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Immediately following the command module are two checks on the program

status. If the exit option was selected in the command module, the loop is
- interrupted and the program enters the termination stage. The reset option
causes a module call to re-initialize all working parameters.

The calculation phase of the loop is begins with the support module, where a
determination of the estimated support plane directly beneath the vehicle is
made. The position and velocity of the ASV’s body is then calculated in the
body rates module (Figs. 4.9 and 4.10). The body kinematics used in this module
are discussed in section IILLE.

The gait period is next calculated in the optimal period module. This module
uses a optimal period control algorithm which considers the kinematic limit of the
supporting legs. In this algorithm, a period is calculated for each leg. based on

. the time required for its foot to reach the limits of its corresponding constrained
working volume. The minimum of all of the supporting leg's periods is chosen as
the vehicle’s optimal period. No foot should therefore be required leave its
constrained working volume while supporting the body. A backward gait period
is also computed for the use of the wave gait walking in the reverse direction.

[Ref. 4: pp. 63-69]
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Figure 4.9 Body Rates Module (1 of 2)
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The deceleration module checks the output of the previous module. If the

period is below the set threshold, the vehicle is slowed. Each time the period falls
below the minimum value, longitudinal body velocity is cut ten percent and
lateral velocity and yaw rate are cut twenty percent. This slowing occurs in each
pass until the walking period rises to acceptable limits.

The leg phase module is used to update the movement phase of each leg.
The phase, expressed as a modulo one floating point number, indicates at what
point the leg is in its cycle of supporting, lifting off from the ground, being
transferred toward the desired foothold, and being placed onto the ground. The
relative phases of the legs in this simulation are set to move the legs in two, 180
degrees out of phase tripods.

The foot trajectory module uses the leg phase information and the period in
calculating the position of the feet relative to the body. The algorithm is shown
in the flow chart of Figure 4.11. The transfer time is the length of time allotted
for moving the foot from one foothold to the next. This determines the speed in
which the transfer is made.

The phase of the leg relative to the beginning of foot liftoff is referred to as
the transfer phase. When the leg’s transfer phase is negative, corresponding to
being on the ground in a supporting role. the foot’s relative position is determined
by the support trajectory module (Fig. 4.12). When the leg’s transfer phase is
greater than zero but less than the liftoff-transfer transition value, the relative

foot position is returned by the liftoff trajectory module (Fig. 4.13). Likewise a
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transfer phase value between the two transition point values yields a response
from the transfer trajectory module (Fig. 4.14 and 4.15), and a phase value
greater than the transfer-placement transition value yields a relative foot position
calculation from the placement trajectory module (Fig. 4.16).

The foothold selection algorithms contained in the transfer trajectory module
are discussed in section III.C.3. Note that within this module the desired end foot
position is treated differently in the follow-the-leader and forward wave gait
modes. The forward wave gait, with its high degree of maneuverability, has a
considerable greater probability that the projected ideal position toward the end
of the transfer phase will be much different from that at the start. Therefore the
desired foot position in the case of the forward wave gait is updated on each pass.
In the follow-the-leader gait case it is only calculated during the first time through
the the module.

The results of the calculation phase are the position and orientation of the
body and the relative position of each of the feet. These values are used, with the
inverse kinematic relations derived in section III.LE.4, in the display phase to
obtain the rotation angles and translation distances required to position the

ASV’s component parts.
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Figure 4.15 Transfer Trajectory Module (2 of 2)
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The ASV object lists are then edited and the updated parameters inserted
into their corresponding rotation and translation commands. Once this is
completed, the display calls are made for the background. the terrain object and ’
then the properly ordered ASV object. Swapping display buffers completes the
loop.

The ASV simulation program presented here consists of fifteen separate files
linked, together with the graphics, math, and standard input-output libraries,
using the UNIX make utility. The program files and Makefile listings are
presented in the appendix. The routines were created in a modular fashion for
ease of development and testing and to assist in future program changes.
Constants are grouped into a single header file walk.h, for convenient reference

and modification.

E. SUMMARY

This chapter describes the ASV simulation program. The first section is a
guide for the operation of the program. It details the use of the menu system and
the operator controls. The following section discusses the display of graphics on
the TRIS-2400. The final section covers the organization and flow of the main

routine and its modules.
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V. SIMULATION PERFORMANCE

This chapter provides a brief review of the performance of the ASV
simulation program. The review is largely subjective and is based on the author’s

experience with the operation of the simulation.

A. MODELING FIDELITY

The image of the vehicle on the screen appears to be a reasonable likeness of
the actual ASV. This is believed, to a great extent, to be due to the proper
scaling of dimensions of component parts, based on available blueprints of the
ASV. Details such as the leg hydraulic actuator housings and the optical
scanning radar. mounted on the cab of the vehicle. add to the visual effect. The
color scheme of the simulation vehicle has been altered to enhance the visibility of
the vehicle and its parts.

The walking motion of the model is very similar to that of the real vehicle.
This observation is based on viewing of videotapes produced at the Ohio State
University. A notable difference is that the simulation model is perceived to
operate at a much slower speed. A simulation time increment of 1/100th of a
second yieldg a display time to real time speed ratio of 1:30. Operating the

simulation with a simulation time increment much greater than 1/100th of a

second to compensate for this causes problems related to the optimum period and
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leg phase modules of the program. This leads to gross errors in the foot trajectory

planning algorithms.

B. FORWARD WAVE TRIPOD GAIT

Driving in the forward wave tripod gait mode is a very simple task. Although
a three-axis joystick would be prefered, the mouse-driven sliding bar control is
easy to use and effective. Switching between control bars for forward. lateral. or
rotational control can be accomplished with reasonable ease.

The external vantage point of the vehicle causes very little problem for
maneuvering the vehicle. This may change as the model’s speed increases and
obstacles are introduced into the environment.

Overall. maneuverability of the ASV in the forward wave tripod gait mode is

clearly demonstrated with this model.

C. FOLLOW-THE-LEADER TRIPOD GAIT

The follow-the-leader tripod gait appears to work especially well for forward.
straight-line locomotion. Turning. however. is extremely restricted. Preliminary
investigations indicate a miniinum turning radius of 18 times the body length,
using the constrained working volumes depicted in Figure 2.4. This is far greater
than oxpec‘tod. An estimated envelope for turning. based on initial simulation
trials. is shown in Figure 3.1. Steering commands falling outside of this envelope

result in faults within the foot trajectory planning algorithms. These faults
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usually occur within the first four degrees of the turn attempt. Decreasing the
display time interval extends the maximum magnitude of the command envelope.
but only marginally improves the permitted relative direction command input.

The shape of the steering envelope is rather unexpected, and as of yet.
unexplained. Factors likely to have the greatest influence on the envelope are the
geometry of the leg’s constrained working volume and the implementation of the
optimum period and foot trajectory planning algorithms.

Expanding the constrained working volume to the full working volume has a
remarkable effect on the maneuverability of the vehicle. while operating in the
follow-the-leader gait mode. By doing so, the minimum turning radius improves
to approximately five times the body length. This indicates a great potential
advantage in utilizing dynamic stability algorithms for future gaits.

Overall the follow-the-leader gait and tractor-trailer steering appear to be
successful for level, relatively obstruction-free terrain. Further research is needed
to determine the nature of the limitations and the means to expand the vehicle's

maneuverability while operating in this mode.
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VI. SUMMARY AND CONCLUSIONS

In this thesis a tripod follow-the-leader gait class is introduced for use by six-
legged walking vehicles. The class represents an extension of previously defined
follow-the-leader gaits and should prove useful for legged vehicles traveling in
rough or treacherous terrain conditions.

A new style of steering is also developed for follow-the-leader gaits. This
steering mode exhibits a general response similar to that found in steering a
wheeled tractor-trailer vehicle. With this mode, the driver is concerned only with
specifying the velocity of the front of the vehicle. The algorithm ensures that the
body of the vehicle follows along the path of the front.

An improved simulation model constructed to study the gait and steering
algorithms is also presented in this thesis. The vehicle selected as a physical
4 reference for the model is the Adaptive Suspension Vehicle (ASV). which is
currently undergoing testing and development at the Ohio State University. The
H model developed is intended as a general tool for analyzing a variety of walking

control algorithms for legged vehicles.
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A. RESEARCH CONTRIBUTIONS

Previous research on follow-the-leader gaits [Ref. 3|, has concentrated on gaits
that are temporally oriented. Since footholds. are used by the following legs
immediately after being abandoned by tlie lead leg, this produces a creeping
motion with alternating leg and body movement.

Extending the class of follow-the-leader gaits into the spatial domain relieves
the requirement of immediately utilizing a foothold as soon as it is abandoned.
This gives a greater degree of freedom to leg movement and allows the possibility
of smooth. continuous body motion with shorter leg stroke.

The nature of a follow-the-leader gait greatly constrains the maneuverability
of the walking vehicle. The vertical projection of the vehicle’s center of gravity is
required to fall within the support pattern of the legs and is therefore confined by
the history of footholds produced by the lead legs. The similarity of this problem
to that of a trailer pulled by a tractor cab has inspired the adoption of the term
"tractor-trailer" steering. With tractor-trailer style steering, the driver controls
the path of the front of the vehicle. As long as the driver does not turn too
sharply (possibly causing a wheeled tractor-trailer to jack-knife). the vehicle's
body follows along this path.

The sslgction of footholds for the leading legs is based on projecting the
relative heading vector provided by the operator. The location of recently
abandoned footholds is retained within the control algorithm for use by the

middle and rear legs.
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The simulation presented in this study models the kinematics of the ASV.

The model incorporates many of the simulation features presented by Lee [Ref. 4].
including omnidirectional control, automatic body altitude and attitude
regulation, leg motion planning, body deceleration, and filters between the control
inputs and reaction which provides the operator with the "feel" of vehicle
dynamics. A simplified variation of constrained working volumes is also used.

The simulation program has a modular design which creates a flexible
environment for studying various gaits and control algorithms. The program as
currently configured has two modes of operation. The first features a forward
wave tripod gait with three-axis control for steering in body coordinates. The
second mode utilizes the follow-the-leader tripod gait and two-axis control
tractor-trailer style steering. developed in this study. The program’s displays and
controls are operated with a mouse-driven menu package using a single mouse
button.

The graphics presentation is greatly improved over Lee’s monochrome line-
drawing representation. Three-dimensional, solid body, color graphics are made
possible through the implementation of the model on the special purpose software
and hardware of the IRIS-2400 system. This provides a notable enhancement of

realism for the vehicle simulation.
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B. RESEARCH EXTENSIONS

It has become clear. through the work of developing this study. that there are
many directions in which future research could be pursued. Four major areas to
be considered for extension are: quantitative measurement of the FTL tripod gait
performance, improvement of program features. improvement of display speed,
and expansion of upper level control algorithms using artificial intelligence.

Developing performance criteria for the simulated ASV is critical if one is to
effectively use the program as an aid for developing and evaluating walking
algorithms for the actual machine. Initial research might well concentrate on
measuring turning radii, steering reaction times, stability margins and basic
parameters of mobility.

As with any simulation model, there are many desired features which could
be added to enhance realism. Perhaps the most important improvement for this
type of mobile vehicle would be the inclusion of rough or uneven terrain into the
model. Provisions were made in the development of this model for that
eventuality. A few new algorithms, for functions such as estimating the support
plane beneath the vehicle and adjusting the constrained working volume to
conform to the terrain slope, will need to be written. It should be possible to
follow the‘wfork of Lee [Ref. 4], at least initially, in improving the simulation in
this direction.

Because the ASV is designed for rough terrain locomotion, developing a good

foothold search algorithm is important. In addition. the inclusion of foothold

86



search into the simulation model would enable the FTL gait to be better
evaluated with respect to other types of gaits in various terrain conditions. This
would quantify the advantages of reduced foothold probing requirements for the
FTL gait.

This simulation could also be used to further develop steering mechanisms for
the ASV. Most notably, the algorithm for the tractor-trailer style steering uses a
simple method for body positioning based on the centroid of the established
footholds. A different method for body steering which minimizes the maximum
leg excursions might improve the vehicle's turning radius.

Dynamic modeling and supplementing the model’s kinematics would greatly
improve the realism of vehicle movement. Moreover. it should also notably
increase mobility. as the vehicle would be free to utilize its leg's full working
volumes. This should also lead towards the development of a great number of
new gaits, which are dynamically, but not statically, stable.

Graphics techniques can be improved to enhance the realism of the displayed
image. Features such as shading. depth-cueing, reflectivity of surfaces. terrain
definition, and increased vehicle detail are all possible using current state-of-the-
art techniques. Higher resolution monitors and an enlarged number of bit planes
in the dnsplay hardware are also highly desirable.

Adding additional features to the model has the decided disadvantage of
requiring more cpu time for the simulation. As the program now exists. the

sitnulated vehicle moves and -ecacts markedly slower than the actual vehicle.
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There are, however, ways to improve the display time for the model. The prime
means is of course to upgrade the hardware. using newly developed and more
capable machines. The code may also be streamlined for efficiency. Possibly
several of the interactive features could be reduced or eliminated.

Another possibility for improving display time is the replacement of the
integration routines within the body kinematics section of the program with an
incremental homogeneous transformation matrix technique used by Lee |Ref. 4].
Integration is used here because of the simplicity of the technique and the
author’s familiarity with the IRIS-2400 special hardware commands for rotation
and translation. It may be that the homogeneous transformation matrix could
also be used directly with the special hardware to provide the full transformation
with fewer trigonometric computations. This possibility has not been investigated
by the author.

An interesting avenue of research to explore is to automate the uipper levels of
the control hierarchy. It may be possible to use an expert system shell running on
a special purpose LISP machine to provide driving commands to this simulation.
As of this writing, efforts are underway by others to establish communications
between the IRIS-2400 system and a Symbolics 3675 LISP machine.

Extensions to the work presented in this thesis are possible and will likely

prove very fruitful. It is hoped that this line of research will lead to more efficient

and practical gaits and control algorithms for legged walking vehicles in rough

terrain.
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APPENDIX
PROGRAM LISTING

/‘t*##itil“t*tt‘ttttttlttttttttt‘tttt*xt“t*lttttlttt

This program is written for the iris-2400
walk.c

This is the main program for the simulation.

Relle Lyman 04 May 1987

EXEXEAERREEXRERAREERER XX R R A XS ARSI R AKX R AR KFEREA RS R KRR R

/

#include "gl.h"
#include "dwvice.h"
#include "walk.h"
#include <stdio.h>
#include <math.h>

main()
{ . .
Object machineobjecti4!.leg'7!/4].textobj,vertextobj ,thighobj!7' 2|4,
actuatorobj.7 {2][4],shinobj 7]:2]i4], walker 4| ,groundobject;

/* NOTE: this program uses only elements 1-8 of arrays and vectors.

Legs are numbered to remain consistent with original research . */

Tag transrot_tagi4|,tr_end tagi4|. legmovetag 7,4 .
actmovetag|7)/2' 4].bodytagl|4’,
thighmovetag 7)'2'{4 shinmovetag|7|,2]|4;;

Colorindex wmask :

int i,j.k.n.
program status. /* desired status of program: RUN, HALT or RESET */
selected gait, /' indicates which tripod gait is to be used */
slow flag, /* flag indicating deceleration is needed *,
warning, i* flag indicating supporting leg is outside of working volume */
leg_status(7}; /* status of leg (supporting, liftoff, transfer, placement) */

static float
hx|7]= {0,155.,155.,0.,0.,-155.,-155.}, /* Leg attachment points *,
: hy:7 = {0.50.,-50.,50.,-50.,50.,-50.},
| hz|7|= {0,28.,23.,23.,23..23.,23.},
147={0L4-L4L4.-LaLe-L4e};

static Angle theta 7}={0,0.0,0,0,0,0}. ,* Leg component angles *
alpha!7]={364,364,364.364.364.-364.-364}.
gammai7)={317,317.317,317.317.-317.-317};
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.= walke *¢

float temp.templ.temp2.temp3,top,bottom, , * Temporary variables *

alpharad 7,. -* Leg component angles in radians *
thetarad.
" legcoord x!7. ;* Foot position in leg coordinates */

legcoord yi7..
legcoord 2{7.
. azimuth elev,roll, /* Body Euler angles (rads) */,
ordered vel mag, /* Ordered velocity of the cockpit {magnitude) *

ordered ivel.dir, /* Ordered velocity of the cockpit (direction) *

d1}7], "~ /* Joint variables */

d2i{7..

knee(7]{2], /* Relative position of knee *

foot {7 (2], /* Relative position of foot */

h{4]|4], /* Homogeneous transformation matrix */
invh(4}4;, /* Inverse homogeneous transformation matrix *,
legphase{7',  /* Phase of individual legs *-

rel legphase(7|, . * Phase of individual legs relative to leg one*
period, /* Period of leg cycle */

min period. * Minimum allowed period *’

tx,ty.tz: "* Earth coordinates of body position *

vector rot rate. '* Body rotation rates */
trans rate. /* Body translation rates */
ordered rate, /* Ordered lateral and longitudinal transiation and yaw rates *
footpos(7], '* Position of foot in earth coordinates */
b footpos|7|, /* Position of foot in body coordinates *

fh 7}, /* selected footholds (earth coordinates) '
. oldfh 7 ; /* old selecied footholds (earth coordinates) *.
work vol cwv|7}; /* Constrained working volumes *,
plane spe; /* Estimated support plane */

/* Initialize the IRIS graphics */
ginit() : /* standard IRIS graphics initialization */

doublebuffer() ; /* double buffering mode */

i *®

geonfig() ; configure the IRIS (use the above commands */

wmask =(1< <getplanes{))-1 . /* enable all the bit planes for writing */,

+* set to 2**{getplanes())minus one */

/* all bit planes on ,
writemask{wmask) :

backface(TRUE); ‘* set backface polygon removal on *,
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walk.c

qdevice( MIDDLEMOUSE}: * set up the queue for the menu *
Le( MIDDLEMOUSE MOUSEX MOUSEY)

mapcolor{LTYELLOW 225,225 .0). * create new colors */ ;
mapcolor( WHITE].230.230.230):

viewport {4106.1023.0.767) . * set world view * .
perspective{600.(614.0. 768).0.0.1023.0) :

make the ground
makeground(& groundobject);
* make the robot *
makewalker(machineobject.d1.d2.theta knee.gamma.alpha.transrot tag.
tr end tag.walker.leg.thighobj.actuatorobj.shinobj, -
legmovetag.thighmovetag.actmovetag.shinmovetag.tx.ty.tzroll.
elev azimuth hx.hy hz l4) ;
* Initialize the ASV walking routine parameters. */
mitialize(h.invh.&rot rate &trans rate &ordered rate.&spe.& period.
leg status, legphase rel legphase, footpos,b _footpos,cwv.fh.
oldfh.& selected gait,&ordered _vel mag.&ordered vel dir.
&min period.& program _status &tx, &ty &z, &roll &elev. &azimuth);

while(TRUE) * Main program loop *,
{

*y

* Input the driver's commands.
driver command(&ordered rate.&rot rate &trans rate.&program status,
b footpos.& period. alpha gamma,theta &slow ﬂug &roll.&elev,
&azimuth & ix. &ty &iz.&ordered _vel mag, &ordered _vel dir,fh,

&selected gait):

if (program status == HALT)
{

/® Quit program. */

break;

}
if (program status == RESET)

* Reinitialize the ASV walking parameters. *’

initialize(h.invh.&rot rate,&trans rate,&ordered rate.&spe & period.
leg status, legphase rel legphase footpos,b footpos cwv fh.
oldfh.&selected _gait, &ordered _vel mag.&ordered vel dir.
&min period, & program _status, &tx. &ty &tz &roll &elev & azimuth]
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;* walke *,

,/* Calculate the estimated support plane. */
;* Future revision needed for rough terrain. */
support _plane(&spe);

. /* Calculate the body rotation and translation rates. */
body rates(&rot_rate&trans rate,&spe,h.invh.&ordered rate,
&ex &ty &tz,&roll &elev, &azimuth):

/* Calculate the constrained working volume for the legs. */
con_work _vol(cwv,b _footpos,leg status &warning);

/* Calculate the optimal period for walking. */
optimal period(legphase.b_footpos,&rot _rate &trans ratecwv,
leg status.&period);

/* Decelerate if necessary. */’
decelerate(&trans rate.&rot rate &period.&slow flag.&min period):

/* Calculate the phase of each leg. */
leg_phase(legphase.rel legphase &period).

/* Calculate the new position for each foot. */
foot trajectory(legphase, & period,leg status.footpos,b footpos.fh,oldfh,
invh h.cwv . &irans rate.&rot rate.&selected gait);

,* Display the ASV on the screen. *-

,* This section computes the new parameters to position the legs
relative to the body. based on the relative position of the feet.
It then check to ensure that no actuator positions exceed the limits. */
/* Convert foot position to leg coordinates. */,
for(i=1; i<5; i+~)

legcoord x|i] = b_footpos;i].x - hx|i|;

legcoord yli] = b_footposii].y - hyli|;

legcoord 3ii; = b_footpos|i .z - hsiij;
}

. * The foot position of the rear legs are changed to compensate for
the 180 degree rotation used in the leg construction routine. */
. for{i=5;1<7; 1~ -)
{
legcoord x|ij = hx'i - b_footpos|i .x:
legcoord y(il = b footposii|.y - hy i}
legcoord z:1 = b footposii .z - hz i;

}
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/* walk.c */

for(i=1; i<7 ; i+=)
{

/* generate required parameters d1,d2, theta */

d2lil= legeoord x|i}/5.0;

temp= legcoord yli| * legcoord yfil;

temp2=legcoord z{ij*legcoord z|i}; -
d1jij= -(5.0*L3-sqrt(temp+temp2-L4*L4))/4.0;

templ=5.0*L3+4.0*d1|i| ;

switch (i)
{
case 1:
case 3:
case 5: temp3 = templ*legcoord yli] + L4*legcoord zli];
break;
case 2:
case 4:
case 6: temp3 = templ*legcoord yli| - L4*legcoord zli};
}
thetarad = asin(temp3/(templ*templ + L4*L4));
theta|i = thetarad * 573 + 0.5;

}

for(i=1 ;i<7;i++) /* prepare parameters for graphics */
{ /* update on all 6 legs */

temp = L3+dlit’ ;

templ = d2]i *d2[i| ~ temp*temp;

temp2 = (L1*L1 - L6*L6 + templ)/(2.0*L1*sqrt(templ)):

alpharad|i]=((PI/2)-atan(d2{i|/temp)-acos(temp2)) ;

/* Note: One half of a degree has been added to all angles */
alphali|=(alpharad|i|*573+.5);

kneeii}|0]=(L2*cos(alpharad|il}+.5); /* relative to baseplate */
kneeji||1]= -({L2*sin(alpharad!i])- d1[i])+0.5);/* relative to baseplate */

foot|i}|0]= (5.0*d2li|+.5); /* relative to baseplate */
foot|i){1]= -(5.0*L3+4.0*d1[i]+.5) ; /* relative to baseplate */
top=(kneeli} 0]-foot|i][0]);

bottom=(knee[i:'1]-foot[i|[1]);

gamma i=(atan(top/bottom)*578+.5) ;




/* walk.c */
for (n=0; n<4; n+~) /* The walker is updated in each quadrant */

editobj(thighobjli]|0]in]) ; /* edit each leg to new */

objreplace(thighmovetagii]iO}[n]) ; /* location */
- rotate(alphali],’Y’) ;

closeobj(}) ;
- : editobj(thighobjli]|1]n]) ;

objreplace(thighmovetag|i}/1]in]) ;
translate(0.0,0.0,d1i]) ;
closeobj() ;

editobj(actuatorobj;i|[0]:n]) ;
objreplace(actmovetagl|i:|0l[n]) ;
rotate(alphali],’Y’) ;
closeobj() ;

editobj(actuatorobjiii[1]/n]) :
objreplace(actmovetag|i’|1}in|) ;
translate(d2'i ,0.0,-L3) ;
closeobj() ;

editobj(shinobj[i]|0][n]) :
objreplace(shinmovetag|i].0iin]) ;
- rotate(gammali],’Y’) ;
closeobj() ;

editobj(shinobj[i](1][n]) :
objreplace(shinmovetag|i)i1}(n]) ;
translate({float)(knee|i][0]),0.0,(Aoat)kneelil{1]) ;  *
closeobj() ;

editobj(leg'il|n]) ;
objreplace(legmovetagii|(n]) ;
rotate(theta;i ,’X’) ;
closeobj() ;
} /* end quadrant loop */
} /* end for leg loop i=1 ... */

for (n=0; n<4; n++)

editobj(machineobject/n|) ;
objdelete(transrot_tag|n|,tr end tag'n ):
objinsert(transrot tag|nj);
translate(tx,ty,tz):

" rotate((int) (azimuth*573),'Z");
rotate((int)(elev*578),'Y"):
rotate((int){roll*573).°’X"); \

closeobj() ;
} /* end of quadrant loop */
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/* walk.c */

/* set up the background */
color{BLUE):
clear();

/* Keep the viewing relationship constant. */
perspective(600,(614.0/768),0.0,1023.0) ;
lookat(800.0~tx,800.0+ty,550.0,tx,ty,-50.0,1100);

/* CALL THE GROUND */
callobj(groundobject);

/* Display the ASV in the correct quadrant configuration */
if (azimuth < 0.0)

{azimuth += 2.0 * PL.
i}f (azimuth > 2.0 * PI)
{azimuth -=20*PI,
i}f(azimuth < 0.25*P])
{} callobj(machineobject(0]);

if ((azimuth >= 0.25*Pl)&&(azimuth < 0.75*PI))

callobj{machineobject(3]);

}
if ((azimuth >= 0.75*PI)&&(asimuth < 1.25*Pl))

callobj(machineobject{2));

}
if ((azimuth >= 1.25*PI)&&(asimuth < 1.75*PI))

callobj(machineobject[1]);
if (azimuth >= 1.75*PI)
{

callobj(machineobject|0]):

swapbuffers() ;
* end of mai loop */
»~ end of main program loop "/
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;* walk.e %

/* Clean up the screen. */
color(BLACK) ;
clear() ;
swapbuffers();
color(BLACK);
. clear();

swapbuffers();

finish() :

gexit() ;

} /* END OF MAIN PROGRAM */
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This is the header file for the program walk.c.
walk.h
Relle Lyman
14 May 1987

‘lt‘i“‘l“U.‘t“"“.!““““‘l.t‘t‘t“t..tt"‘lt‘t“it.“‘/

#define BETA 0.5
#define DELTA TIME 0.010
#define TIME CONSTANT 10.1
#define TIME_CONSTANT 20.25
#define TIME CONSTANT 30.5
#define FTL GAIT 1
#define FWD WAVE GAIT 2
#define FORWARD 1
#define BACKWARD 0
#define END LIFT PHASE 0.2
#define BEGIN PLACE PHASE 0.8

#define SUPPORTING 0

#define LIFTOFF 1

#define TRANSFER FORWARD 2

#define PLACEMENT 3

#define ON 1

#define OFF 0

#define LENGTH 310.0 /* The length between the forward
and aft hip joints */

#define HALFLENGTH 155.0 * Half the length between the forward

and aft hip joints */
#define FOOTLIFTHEIGHT 40.0

#define LONG TIME 1000000

#define HO 160.0 /* Desired body height (cm)*/
#define OUTER LIMIT 608 /*cm/sec */
#define INNER _LIMIT 1.52 /" cm/sec */
#define RUN 0

#define HALT 1

#define RESET 2

#define NORMAL 0

#define SLOW 1

#define PI 3.14159

#define UP 1

#define DOWN 2

#define IN 1

#define QOUT 0

#define LTYELLOW 100

#define WHITEIL 107

#define TEXTCOLOR BLACK

#define NOHIGHLIGHT LTYELLOW

#define ACTIVEHIGHLIGHT RED
#define INACTIVEHIGHLIGHT YELLOW
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i ;* walk.h ¥,

#define L1 20.0
#define L2 102.0
#define L3 24.0
sdefine L4 32.0
#define L6 30.0

struct mag in_xys /* magnitude along x, y, and z axes */

{
float x,y,z2;
b

typedef struct mag _in_xyz vector;

struct plane coefficients /* plane coefficients */
float a,b,c.d:

typedef struct plane coefficients plane;

typedef struct
float min,
max,
center;

} dimensions;

typedef struct
* {
dimensions x,
Yy,
T,
} work vol;

typedef struct

{
int left right,top.bottom,x0,y0.x1,y1,x2,y2;
char *text0.*text]. *text2;

} menubox;
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This is a function for the iris 2400 program walk.c.
init.c

Relle Lyman 27 Apr 1987
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#include "gl.h"
#include "device.h" .
#include "walk.h"

initialize(h.invh,rot rate trans rate.ordered rate.spe,period, leg status,
legphase.rel legphase footpos.b footpos cwv fh,oldfh,selected _gait,

ordered vel mag,ordered vel dir,program status,tx,ty.tz. roll elev .azimuth)

/* This function computes the body rotation and translation rates. * '

vector *rot_rate.  /* rotation rate */
*trans rate,  ’'* translation rate */
*ordered rate. /* ordered x translation, y translation,
and z rotation rates */
fhi7. +* selected footholds (earth coord.) */
oldfh 7. /* old selected footholds (earth coord.) */
footpos|7.. * position of the foot in earth coord. */

b footpos;7]; /* position of the foot in body coord. */ -

plane *spe; /* support plane in earth coord *:
work vol ewv(7; /* constrained working volume *
float hi4i4, ;/* homogeneous transformation matrix *

invh{4/[4;, ,* inverse of transformation matrix */
legphase|7|, /* phase of the phase */
rel legphase!7], /* phase of the leg relative to leg one *
*period, /* body support period */
*tx,*ty,"tz.  /* position of body in earth coordinates *
*roll,*elev,*azimuth, /* body euler angles */
*ordered vel mag. / * ordered velocity of the steering pt {magnitude)*/

*ordered vel du' /* ordered velocity of the steering pt (direction)*/’
int  leg status|7]. ;* status of the leg *
*program status. /* desired status of program */
*selected gait: /* type of tripod gait to be used *’
{
int i
float modulus _one(); /* modulus one function */
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/* initialize the transformation matrix *,

hio}'0. = 1.0;
hio}'1 = 0.0;
hi0} 2! = 0.0;
hio|is| = 0.0;
hi1]i0] = 0.0;
h'1)1: = 1.0;
hil)i2; = 0.0;
h'1}3, = 0.0;
h'2]i0, = 0.0;
h'2]1} = 0.0;
hi2].2i = 1.0;

h:2]'3; = HO; ,* initial height of the center of the body

h'3]i0! = 0.0:
h'3)'1) = 0.0;
h:3]'2' = 0.0:
h 31’3 = 1.0:

/* initialize the inverse transformation matrix */
for (i=0; i<3; i+~)

for (j=0; j<3; j++)
invhii|[j| = hijii];

invh:3|[ij = 0.0;
invhii [3] = -(h'0][i]*h‘0|(3] + h'1][i]*h[1]{3" ~
h{2]{i]*h({2]{3});

invh[3}[3] = 1.0:

/* initialize the body rotation and translation rates */
rot rate->x = 0.0:

rot rate->y = 0.0;

rot rate->z = 0.0;

trans _rate->x = 0.0;

trans rate->y = 0.0;

trans rate->z = 0.0

/* initialize the commanded body rates */
ordered rate->x = 0.0; ’* translation *,

ordered rate->y = 0.0; /* translation *,
ordered rate->z = 0.0; /* rotation *

*period = LONG _TIME;
*selected gaiv = FWD _WAVE GAIT:
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" inite */
/* initialize the relative leg phase */

rel legphase{lj = 0.0;

rel legphase[2! = 0.5;

rel legphase(3, = BETA;

rel_legphase{4! = BETA-0.5;

rel legphase|5| = 2*BETA - 1.0;

rel _legphase|6) = modulus_one(2*BETA - 0.5);

/* initialize the leg status and phase */
for (i=1:1<7; 1—+)
{
leg_status|i| = SUPPORTING;
legphaseji’ = rel legphaselil;

/* initialize the constrained working volume for each leg */
ewv[l].x.min = 95.0;

ewvill.x.max = 215.0;
cwvl].x.center = 155.0;
ewv lly.min = 60.0:
cwviliy.max = 131.0:
cwvilj.y.center = 95.0;
ewv.l.z.min = -240.0; .
cwv.lj.z.max = - 80.0;

cwvi1].z.center = -160.0;

cwv/2].x.min 95.0; .
cwv|2].x.max 215.0;
cwvi2].x.center = 155.0;

cwv{2].y.min -131.0;
cwvi2].y.max = -60.0;
cwv(2].y.center = - 95.0;

cwvi2l.z.min -240.0;
cwv 2/.z.max = - 80.0;
cwv 2|.z.center = -160.0;

ewyv 3l.x.min = - 80.0;
cwv'3lx.max = 60.0;
cwv 3| x.center = 0.0;
ewvi3ly.min = 60.0:
cwv:3ly.max = 131.0; -

cwvi3].y.center = 95.0;

ewv(3l.z.min = -240.0;
cwv(3j.z.max = - 80.0;
cwv|3].z.center = -160.0;
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/* init.e ¥,
cwvi 4 .x.min = - 80.0:
cwv'4 .x.max = 60.0;
cwvi4 x.center = 0.0
»
cwvi4.y.min = -131.0;
cwvi4.y.max = - 60.0;
- cwvi4 .y.center = - 95.0: '
cwvid..z.min = -240.0;
cwv4j.z.zmax = - 80.0;
cwv|4 .z.center = -160.0; )
1
cewviSi.x.min = -215.0; '
cwvls .x.max =-950;
cwv 5 .x.center = -155.0; ‘
t
ewv,5ly.min = 60.0; :;
cwv;5 .y.max = 131.0: '
cwvi5 .y.center = 95.0:
cwyv'd.z.min = -240.0; X
cwvis .z.max = - 80.0; )
cwv 5 .2.center = -160.0;
N cwvié .x.min = -215.0; :
cwvi6 .x.max = -95.0;
cwvi6' x.center = -155.0;
cwv(6,.y.min = -131.0;
cewvi6.y.max = -80.0;
cwvi6i.y.center = - 95.0;
cwvib.z.min = -240.0;
cwvi6.z.zmax = - 80.0; y
cwvi6;.z.center = -160.0; !
/* initialize the selected foothold positions * /
fh 1:.x = cwv|l].x.center + LENGTH/12.0:
fhi2!.x = cwv|2|.x.center - LENGTH/12.0; )
fh.3l.x = ewv|3|.x.center - LENGTH/12.0; ‘
fh 4].x = cwv|4].x.center + LENGTH/12.0; .
fh:5].x = ewv|5].x.center + LENGTH/12.0; '
fh 6].x = ewvl6].x.center - LENGTH/12.0; \
R for (i= 1< T:i~~) '
{ '
'
fhii].y = ewv i.y.center; )
fhil.z - 0.0: !
- } N
A
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init.¢
;™ initialize the earth relative foot positions =
for (i=1;i<T5i+v+)
{

footpos|i;.x = fhii}.x:

footposiii.y = fhli].y:

footpos|il.z = fhiil.z;

}

/* initialize the old selected foothold positions */
for (i=1;i<T;i+~)
{
oldfh’i.x = fhii.x - LENGTH,3.0;
oldfhiij.y = ewviii.y.center;
oldfhiil.z = 0.0:
}

i

/* initialize the body relative foot positions */

for (i=1;1<T;1++)

b footpos|i].x = cwv i'.x.center;
b footposfi].y = cwv ii.y.center:
b footpos{i|.z = cwv i .z.center;

}

/¥ initialize the estimated support plane *;
spe->>a = 0.0,

spe->b = 0.0;
spe->¢ = 1.0:
spe->d = 0.0;

/* initialize the ordered velocity of the steering point */

*ordered vel mag = 0.0;
*ordered vel dir = 0.0;

;™ initialize the body attitude and position */,
*roll = 0.0;

*elev = 0.0:

*azimuth = 0.0;

*tx = 0.0;

*ty = 0.0;

*tz = HO;

, * initialize desired program status *;
*program status = RUN;

/* end of initialize *
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This is a function for the iris 2400 program walk.c.
driver.c

Relle Lyman 13 May 1987
l‘**#t!‘*‘#t#“il‘iitt“‘t*t“#"‘***‘*tl‘l*#t**ii****tttl‘t‘t‘t*t‘t/
#include "gl.h"

#include "device.h"
#include "walk.h"

#include <stdio.h>
#include <math.h>

menubox box||={
0.0.0,0,0,0,0,0.0,0,"not","used","here",
100,200,670,525,120,567,120,597,120,627,"GAIT","WAVE" "FWD",
200,300,670,525,220,567,220,597,220.627,"ATTITUDE" " AND" "ALTITUDE",
300,400,870,525,320.567,320,597,320.627," "."RESET"," "
100,200.525,380.120.422,120,452,120,482."GAIT"," " "FTL",
200,300,525,380,220.422,220,452,220,482,"REPORT" " "."STATUS".
300,400,525,380,320.422,320,452,320,482,"PROGRAM" " " "EXIT",

100.200,310,230.120.250,120,270,120,290."REVERSE". "FORWARD" "TRANSLATE".

100,200,230,150.120.170,120,190,120,210,"RIGHT" . "LEFT" "TRANSLATE",
100,200.150.70.120,90.120,110,120,130."RIGHT" "LEFT","ROTATE".

100,200,310,230.120.250.120,270.120,290," " " " " "
100,200,230.150,120.170,120,190,120,210," "." " " "
100,200,150.70.120,90,120,110,120,130," " " " " "},

driver_command(ordered rate.rot rate.trans rate,program _status,
b_footpos,period,alpha,gamma.theta,slow flag,roll,elev,
azimuth,tx.ty,tz.ordered_vel mag,ordered vel dir.fh selected gait)

/* This function inputs the driver’s commands using a menu and

the mouse. *,

vector *ordered rate, /* ordered x translation, y translation, and z rotation rates */
*rot_rate. /™ actual rotation rate vector */
*trans rate, /" actual translation rate vector *,
b_footpos(7,, ,* position of foot in body coordinates */
fh|7; /* selected footholds {in earth coordinates) */

int  *program status, /* desired status of the program RUN/HALT /RESET */
*selected gait. /* desired tripod gait */
*slow flag; /* flag indicating deceleration is required */

float *period, /* body support period *’
*tx,*ty,*tz.  /* body translation distance (Earth coord) */
*azimuth,*elev,*roll, /* body Euler angles *.
*ordered vel mag, /* ordered cockpit velocity (magnitude) */
*ordered vel dir; /* ordered cockpit velocity (direction) */
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;¥ driverc ¥,

Angle alpha 7|. /* thigh angle */
gamma:7 , .'* shin angle */
theta|7 : /* leg lateral angle ™/

{

Device dummy.x,y;

static int buttonflag = UP,pick,potentialpick,mainmenupick,submenu,slidebar;
int i

float barvalue;

static float time;

char str_orx'100],str_ory{100!,str_orz{100},
str_trx;100|.str_try{100],str_rrz:100},str time{100|;

pushmatrix():
pushviewport();

viewport (0.500,0.767):
ortho2(0.0,500.0.0.0.767.0);

color{CYAN): /* screen background color */
clear(); v

/* Display simulation time on top of screen */

color(TEXTCOLOR);

time += DELTA TIME;

sprintf(str_time,"simulation time %8.3f" time);

¢mov2i(105.700); i
charstr(str_time); ,

if (qtest() == MIDDLEMOUSE) /* Button just pressed or released *,
{
qread (&dummy):
gread(&x);
gread(&y): )
if (buttonfiag == DOWN) /* Button was just released. */
buttonflag = UP; -

if (potentialpick == 0) .

/* No change */ )

}
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* driver.c *

else if (potentialpick < 7) /* Main menu chosen *
{
mainmenupick = potentialpick;
. pick = 0;
pick = potentialpick;
potentialpick = 0;

else /* submenu chosen */

{
pick = potentialpick; /* no change to main menu pick */
potentialpick = 0;

}
}
else /* Button was just pressed. */
{
buttonflag = DOWN;
}

} ,* end of qlest */

if (buttonflag -- DOWN) ,* Find the box over which the
cursor lies for highlighting. */
{

x = getvaluator(MOUSEX);
y = getvaluator(MOUSEY);

potentialpick = 0;
. for (i=L:i<7;i++) /* Check the main menu. */

if (x < boxii|.right && x > box|i .left &&
y < box|i|.top && y > boxii|.bottom)

potentialpick = i;

}

if (submenu == 1) /* Check submenu #1. */
{
for (i=T;i<10:i~+)
{
if (x < boxjij.right && x > box|il.left &&
y < boxlij.top && y > box|i}.bottom)
{
potentialpick = i;
}
. }
}

109

(R Ve ':"1 B L. E:"‘ H“E" .“ i‘|‘..". C..‘....i i.;‘l.g Py Ly ‘.'.'.‘!‘..5‘#..‘\".!“.. ',‘.....

M U8 Do N s,

PR,
o)

"

Al




*,

’* driver.c

if (submenu == 2) /* Check submenu #1. */
{
for {i-10:1<18;i+ +)
{
if (x < box/i|.right && x > box|i].left &&
y < box|i|.top && y > boxii|.bottom)

potentialpick = i;
}
}
}

else /* button is up */

{

potentialpick = O:
}

/* Display the menu. */
for (i=1;i<T;i+~+)

if (i == potentialpick)

{ color(ACTIVEHIGHLIGHT):
ezse if (i == mainmenupick)

{ color{(INACTIVEHIGHLIGHT);

}

else

color(NOHIGHLIGHT);
}

rectfi{box/i|.left, box(i|.bottom, box|i].right, box[i].top);
color(TEXTCOLORY);

recti{box|i].left, box|i].bottom, box!i|.right, box|i].top);
cmov2i(box|i}.x0,box|i|.y0);

charstr(box|i].text0);

cmov2i(box|i].x1,box|i].y1);

charstr(box|i].text1);

emov2i{box|i].x2,box|i|.y2);

charstr{box|i].text2);
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/> driverc *'
if (submenu == 1) ,* Display submenu #1. *,
. { for (i=7;i<10:i+ +)
{if (i == potentialpick)
- {} color({ACTIVEHIGHLIGHT);

else if (i == pick)

color(INACTIVEHIGHLIGHT);
}

else

{
color(NOHIGHLIGHT);,

}

rectfi(box]i .left, box|i].bottom, box|i .right, box'i].top}:
color(TEXTCOLOR);
recti{box ii.left. boxli!.bottom, box[ii.right, boxi|i].top};
cmov 2i(boxii:.x0,box|i].y0);
charstr(box|i.text0);
cmov2i(box:i;.x1,box|i].y1);
. charstr{box]i].text1);
cmov2i(box|i.x2,box|i].y2);
charstr(box|i].text2):

}

color( WHITE); /* Draw LED gages. */
rec11(200,70,400,370);
color(BLACK);
recti(200,70,300,150);
recti({300,70,400,150);
recti(200,150.300,230);
recti(300,150,400,230);
recti(200,230,300,310);
recti(300,230.400,310);
recti(200,310,300,370);
recti(300,310,400,370);
color(RED);
¢mov2i(205.350);
charstr("ORDERED"});
¢mov2i{205,330});
charstr("RATE");

. cmov2i{305.350);
charstr("ACTUAL");
cmov2i(305.330);
charstr("RATE");




* driver.c */

/* Display the parameter values. */
sprintf(str_orx,"%7.2f" ordered rate- >x);
sprinif(str_ory,"%7.2f",ordered rate->y);
sprintf(str_orz,"%7.2{",ordered rate->z);
sprintf(str_trx,"%7.2f" trans_rate->x};
sprintf(str_try,"%7.2f" trans_rate->y);
sprintf(str_rrz,"%7.2{",rot_rate->z);

t¢mov2i(205.270);
charstr(str orx);
cmov2i(205,190);
charstr(str_ory);
e¢mov2i(205,110);
charstr(str_orz);
cmov2i{305,270):
charstr{str_trx);
cmov2i(305.190);
charstr(str try);
cmov2i{303.110};
charstr(str_rrz);

}
if (submenu == 2) /* Display submenu #2. *;,
{
for (i=10;i<13;i~~)
{
if (i == potentialpick)
{
color(ACTIVEHIGHLIGHT);
}
else if (i == pick)
{
color{INACTIVEHIGHLIGHT);
}
else
{
color(NOHIGHLIGHT);
)
rectfi(boxi].left, box|il.bottom, box i].right, box.i!.top):
color(TEXTCOLOR);
recti(box|i].left, box|i].bottom, box'i .right. boxii|.top);
cmov 2i(box|i].x0.boxli].y0):
charstr(box!i].text0);
emov 2i{box|il.x1.box]i}.yl1):
charsir(box|ij.textl);
emov 2i(boxii|.x2.box]i].y2):
charstr(box|i].text2):
}
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* driver.c

color(WHITE): /* Draw LED gages. *,
rect£i(200,70,400,370);
color(BLACK);
recti{200,70,300,150);
recti(300.70.400.150);
rectif200.150.300,230);
recti(300.150.400,230);
recti{200.230.300,310);
recti(300.230.400.310);
recti(200.310.300,370);
recti(300.310.400,370);
color(RED):
cmov2i(205,350);
charstr("ORDERED");
cmov2i(205,330);
charstr("ANGLE"):
cmov2i(303,350);
charstr("ACTUAL"):
cmov?2i(305,330):
charstr("ANGLE"):

}

* Action! ¥,

switch {pick)

case |:

case 2:

case 3:

case 4:

.". > h,s'i.;‘! \.‘t,e'i -." s"‘#"‘ Q" l"‘,\".'a“ 'i'."‘ " “v"‘-r“ Aeh "“"“ 10

submenu = 1;
*selected gait = FWD WAVE GAIT;
break;

submenu = 2;
break;

submenu = 3;
*program status = RESET:
break:

submenu = 4;
joystick(trans rate,rot rate,ordered vel mag.ordered vel dir,&buttonflag);
steering _conv(ordered _rate,ordered vel mag.ordered vel dir,
azimuth,tx,ty,fh);
*selected gait = FTL GAIT;
break;
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‘* driver.c

case 5. submenu = 5;
status report{ordered rate.irans raterot rate,
b footpos.period.alpha,gamma.theta.
slow flag,roll.elev.asimuth,ix,ty.
u);
break;
case 6: ,* exit*/
*program status = HALT;
break;
case 7:  bar(-200.0,200.0,&slidebar. &barvalue,trans rate->x):
if (slidebar == IN)
{
ordered rate->x = barvalue;
}
break;
case 8:  bar(-100.0,100.0,&slidebar.&barvalue,trans _rate->y);
if (slidebar == IN)
{
ordered rate->y = barvalue;
}
break;
case 9:  bar(-1.0,1.0 &slidebar,&barvalue rot rate->z);
if (slidebar == IN)
{
ordered rate->z = barvalue;
}
break;
case 10: /* Future expansion */
break;
case 11: /* Future expansion */
break;
case 12:  /* Future expansion */
break;
default: color(BLACK):
}
popviewport|();
popmatrix():

} /* end of driver command */
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* driverc *’

/ltt‘tt-#tt#t--t:tttttttv:t*ttOn!:s.-tnxvtttt-lt::a:-:t:t:tt#-ttttt‘ttttttutt

bar{minval, maxval slidebar,barvalue.actualvalue)
float minval. maxval.*barvalue,actualvalue:
int “slidebar:

{

}

i ¥ |3
SRR R

register i;
char  str 20;;
int X.Y;

static int barlevel;

/* Draw the sliding bar. */,
cursoff{).
color(BLACK);
rectfi(9,69,90,690):
color(RED);
recti(10.70.30.670):
for (i=0;i< 5:1——)
{
move2i(30.70 < i*150):
draw2i(40.70 - i*150);
cmov2i(34.73 ~ i*150):
sprintf(str, "%6.1f" minval — i*(maxval-minval)/4.0);
charstr(str);

}

curson();

/* Check the location of the cursor. If it is inside the
sliding bar, then calculate the value for its position. */
x = getvaluator(MOUSEX);
y = getvaluator(MOUSEY);
if (10 < x&& x <30&& 70 <y && y < 670)
{
barlevel = y;
*slidebar = IN:
*barvalue = minval + (maxval - minval)*(y - 70)/600.0;
}

else

{
*slidebar = OUT;

/* Draw the bar showing the actual level. */
color(RED);
rectf(15.0,70.0,25.0,(370.0~ 600.0* actualvalue/(maxval-minval)));

/* Draw the bar showing the ordered value. */
color(YELLOW):

recti{11,70,29,barlevel);

/* end of bar *’
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’* driverc *
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joystick(trans rate.rov rate.ordered vel mag,ordered vel dir,buttonflag)

vector *trans rate. . * translation rates of the center of gravity in body coordinates */
*rot_rate; ,* body Euler angle rotation rates */

float *ordered vel mag, /* ordered velocity of cockpit (magnitude) */
*ordered vel dir; /* ordered velocity of cockpit (direction) */

int *buttonflag; /* indicator for middle mouse button */

{

int x,y,i;

float vx,vy, /* velocity of cockpit in body coordinates */
magn.dir; /* magnitude and direction of cockpit velocity vector */

/* Display the steering box. */
color{BLUE);
recti{100.80,400,380);
/* Display the grid */
for (i=1;i<15;i++)
{
move2(90.0+1*20.0,80.0);
draw2(90.0~i*20.0,380.0);

}

for (i=1;1<15:i++)

{
move2(100.0,80.0+1*20.0);
draw2(400.0,80.0+i*20.0);

}

/* Display instructions. */
cmov2i(110,65):

charstr(""Hold the middle button down");
emov2i(110,50);

charstr("to control the joystick");

/* Display the current velocity of the cockpit. */
vx = trans_rate->x;
vy = rot_rate->z * HALFLENGTH + trans_rate->y:
magn = sqrt{vx*vx + vy*vy);
dir = atan2(vy,vx);
if (vx == 0.0)
{
dir = 0.0;
}
linewidth(5):
color(YELLOW);
move2(250.0,80.0);
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/* driver.c *

if (vx == 0.0)
{
dir = 0.0;
}
linewidth(5):
color(YELLOWY);
- . move2(250.0,80.0);
draw2((250.0-400.0*dir),{80.0+magn™3.0));

/* Check the location of the cursor. */
x = getvaluator(MOUSEX);
y = getvaluator(MOUSEY);
if (*buttonflag == DOWN)

{
if (100 < x && x < 400 && 80 < y && y < 380)
{
*ordered vel mag = (y-80)'3.0;
*ordered vel dir = (250-x),400.0;
}
}
* Display the ordered velocity of the cockpit. */
linewidth(3):
color(RED):
. move2(250.0,80.0):
draw2((250.0 - 400.0 * *ordered vel dir),(80.0 + *ordered vel mag * 3.0)});
linewidth(}):

} /* end of joystick *,
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This is a function for the iris2400 program walk.c.
steering.c

Relle Lyman 26 Mar 1987

EREEXREAEREERFAFA SRS A SR X ER XS R EE XX XA XX RS RATA T XS EEREE RN RN -

#include "gl.h"

#include "device.h" -
#include "walk.h"

#include <stdio.h>

#include <math.h>

steering_conv(ordered rate,ordered vel mag.ordered _vel_dir,azimuth, tx,ty.fh)

»*

This function calculates converts ordered head velocity to
ordered body translation and rotation rates. *,

float *ordered vel mag, /™ ordered velocity of the cockpit (magnitude) *,

*ordered vel dir.  '* ordered velocity of the cockpit (direction} */
*azimuth. .* body azimuth angle (radians) *.
X, *ty: * current position of the body’s center of

gravity (in earth coordinates) *°

TR T Ve

vector *ordered rate. * ordered forward and lateral translation .

rates and azimuth angle rate */ .
r fhi7,; * selected foothold (in earth coordinates) */
{ N :
float hx,hy, -* current head (cockpit) position (earth coord.)*/ '
dhx,dhy, ;= desired head position (earth coord.) */ '
fhcen x,fhcen y, /* foothold centroid (earth coord.) */ :
degx,dcgy, /* desired center of gravity (earth coord.) */

dazimuth, /* desired azimuth angle (earth coord.) */ :
diffazm; /* difference between desired and current azimuth */ g

vector desired rate; /* desired earth translation rates and azimuth
angle rate */

Chn a3

TR B
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X

/* steering _conv *'

* .
I

/* Note: This module uses a level terrain assumption.
/* Calculate current head position (earth coordinates). * /
hx = *tx + HALFLENGTH * cos( *azimuth});
hy = *ty ~ HALFLENGTH * sin( *azimuth);

/* Calculate the desired head position (earth coord.). */

dhx = hx + DELTA _TIME * *ordered vel_mag * cos( *ordered vel dir + *azimuth):
dhy = hy + DELTA TIME * *ordered vel mag * sin{ *ordered vel dir - *azimuth):

/* Calculate the foothold centroid. (Forward gaits only) */
fhcen x = (fh|3].x+fhi4].x+fh!5|.x+fh[6].x)/4.0;
fheen y = (fh{3].y+fhi4].y+fh{5].y+fh{6].y)/4.0;

/* Calculate the desired azimuth angle. */
dazimuth = atan2((dhy-fhcen_y),(dhx-fhcen x)):
diffazm = dazimuth - *azimuth;
/* Adjust the difference to a value between pi and -pi. */
if (diffazm < -3.14159)
{
diffazm += 6.2831853;
}
if {diffazm > 3.14159)
{
diffazm -= 6.2831853:
}

* Calculate the desired center of gravity. */
degx = dhx - HALFLENGTH * cos(dazimuth);
dcgy = dhy - HALFLENGTH * sin(dasimuth);

/* Calculate the desired rates (earth coord.). */
desired rate.x = (degx - *tx)/DELTA _TIME;
desired rate.y = (dcgy - *ty)/DELTA_TIME;
desired rate.z = diffazm/DELTA TIME;
/* Convert to body translation and rotation rates. *,
ordered rate->x - cos( *azimuth) * desired rate.x

- sin{ *azimuth) * desired rate.y;
ordered rate->y = cos( *azimuth) * desired rate.y

- sin( *azimuth) * desired rate.x;
ordered rate->z = desired rate.z:

} - * end of steering conv */
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This is a routine for the iris-2400 program walk.c.
status.c

This routine creates a status report to be displayed

on the viewing screen beneath the ASV.

Relle Lyman 27 Mar 1987

L i I Y N P Rt eI
/

#include "gl.h"
#4include "device.h"
#include "walk.h"

status report(ordered rate.trans raterrot rate,b footpos,period.alpha,gamma.

theta,slow ‘ﬂag,;oll‘elev,uzim uth,tx,ty,tz)

int  *slow flag; /* flag indicating deceleration is needed *

Angle thetal7’, /* leg component angles *.
alpha 7}.
gamma7;;
float *period, /* period of leg cycle *
*tx,*ty,*tz, * position of body in earth coordinates *,

*roll.”elev,*azimuth; /* body Euler angles *-

vector *rot rate, /* body rotation rates *:
*trans rate, /* body translation rates *
*ordered rate. /* ordered lateral and longitudinal and yaw rates */
b footpos:7: /* foot position in body coordinates *

int  ik:

char str fpx:7.100.str fpy(7][100],str fpzi7|{100],
str_orx 100 .str_ory[100},str_orzi100},
str_trxi100].str_try{100] str_trz/100),
str_rrx/100},str_rry|100],str_rrz{100|,
str_alpha 7| 100|,str_gamma|7;{100] str_theta/7}100],
str_period|100],str_slow[100;,
str_tx|100],str_ty[100], str_t2{100].
str_roll{100{,str_azimuth[100|,str _elev{100 :
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,* status.c *

sprintf(str_orx."%7.2[",ordered rate->x);
sprintf(str_ory."%7.2f",ordered rate->y);
sprintf(str_orz."%7.2f" ordered rate->z);
sprintf(str_trx."%7.2f",trans_rate->x);
sprintf(str_try,"%7.2(" trans _rate->y);
sprintf(str_| “tr2,"%7.2M trans _rate->z);

- sprintf(str_rrx,"%7.2f" rot_rate->x);
sprintf(str_rry,"%7.2f" rot _rate->y);
sprintf(str_rrz,"%7.2f" rot_rate->z);
sprintf(str_period,"%9.5", *period);
sprintf(str_tx."%7.2f" *tx);
spnntf(str_ty noET.2f" *ty);
sprintf(st.r_tz,"%7.2?’,*tz);
sprintf(str_roll,"%7d",((int) (*roll * 573.0)));
sprintf(str azimuth,"%7d",((int) (*azimuth * 573.0)));
sprintf(str_elev."%7d",{({int) (*elev * 573.0)));

for (k=1;k<7;k++) ¢
{ X
sprintf(str_fpx k ."%7.2f",b_footposik|.x);
sprintf(str_fpyik!."%7.2f".b _footposk|.y);
sprintf{str fpz[kl "%17.2f".b_footposk].z):

sprintf(str_alphalk, no7d", alphalk});
. sprintf(str_gammalk',"%7d",gamma ki): ¢
sprintf(str_theta(k],"%7d" thetajk|);
} -

pushmatrix();
viewport(0.400,0,767);
ortho2(0.0,400.0,0.0,767.0); :
color(BLACK); '
rectfi(10,10,400.370); .
color(YELLOW});
rectfi(20.20,390,360);
color(BLACK);
c¢mov2i(220,340):
charser("X");
cmov2i(280,340):
charstr("Y"); !
cmov2i(340,340): '
charstr("2");

- A A e

cmov2i(30,325): )

charstr("ordered rate");
s cmov2i(30,310);
charsir("trans_rate");
cmov2i(30,295):
charstr("rot_rate");
emov2i(30,280):
charstr("position"):

A O VT By St
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.
/

status.c *;

cmov2i(210,265):
charstr("ROLL");
cmov2i(260,265);
charstr("ELEV."):
cmov2i(310,265);
charstr("AZIMUTH");

cmov2i(30,250);
charstr("current attitude");
cmov?2i(30,235);
charstr("ordered attitude");

cmov2i(30,210);
charstr{"period");

if(*slow flag == SLOW) /* moving too fast */
{

cmov2i(750,220);

color(RED);

charstr{"TOO FAST"):

color(BLACK);

}

cmov2i(30,185);

charstr("x ft pos (1-3)");
c¢mov2i{110.170):
charstr("(4-6)");
cmov2i(30,155);

charstr("y ft pos (1-3)");
cmov2i(110,140);
charstr("(4-6)");
cmov2i{30,125);

charstr("z ft pos (1-8)");
cmov2i(110,110);
charstr("(4-6)");
cmov2i(30,95);
charstr("ALPHA  (1-3)");
cmov2i(110,80);
charser("(4-6)"):
cmov2i(30,85);
charstr("GAMMA  (1-3)"):
cmov2i{110,50);
charstr("(4-6)"):
cmov2i(30.35):
charstr("THETA  (1-3)");
cmov2i{110.20);
charscr("(4-8)"):
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status.c

cmov2i(180.325):
charstr(str_orx};
cmov2i{240,325);
. charstr(str_ory);
cmov2i(300,325);
charstr(str_orz):

cmov2i(180,310):
charstr(str_trx):
cmov2i(240.310):
charstr(str_try):
c¢mov2i{300,310):
charstr(str trz);

cmov2i{180,295):
charstr(str_rrx):
cmov2i(240,295):
charstr(str_rry):
cmov2i(300,295):
charstr(str_rrz):

c¢mov2i(180,280):
charstr(str_tx);
cmov2i(240,280):
charstr(str ty);
cmov2i(300,280);
charstr(str_tz);

cmov2i(180,210);
charstr(str_period);

cmov2i(180,250):
charstr(str_roll);
cmov2i{240,250):
charstr(str_elev):
cmov2i(300,250):
charstr(str azimuth):
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/* status.c */

for (i=1;i<4;i—+)

k= 110+i*70;
emov2i(k.185);
charstr(str_fpx|i]);
cmov2i(k,170);
charsur(str_fpx|i+3]);
cmov?2i(k,155);
charstr(str_fpyii]);
cmov2i(k,140);
charstr(str_fpy|i+3[);
cmov2i(k,125);
charstr(str_fpzii});
emov?2i(k.110);
charstr(str_fpzii+ 3]);
emov2i(k,95):
charstr(str alphai};
emov2i(k.80);
charstr(str_alpha i+3!):
emov?2i(k.65):
charstr(str_gammaji );
emov2i(k,50);
charstr(str_gamma|i-3!):
cmov2i{k,35);
charstr(str_thetali});
emov2i(k.20);
charstr(str_theta{i+3});

popmatrix();
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This is a function for the iris 2400 program walk.c.
support.c

.............

Relle Lyman 21 Aug 1986

t'*#tttitt“‘*t*‘*‘.ttl#tt*kttlt#Ittttt#lt‘tltt"“l‘#*tﬂ.tttt'ttt/

#include "gl.h"
#include "device.h"
#include "walk.h"
#include <stdio.h>
#include <math.h>

support_plane(spe)

/* This module will compute a new estimated support plane based on
the position of the supporting legs. As a temporary measure it
is assumed the support plane is flat and at "sea level" (i.e.
z =0). The equation for the plane is Ax~By+Cz+D=0. */

plane *spe; /* estimated support plane in earth coordinates *,

{
spe->a = 0.0;
spe->b = 0.0;
spe->c = 1.0;
spe->d = 0.0;
}
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This is a function for the iris 2400 program walk.c.
body rates.c

Relle Lyman 19 Apr 1987

tl#'.*l"t“itt“'t"ltitttt‘l‘t‘tt‘tt*l‘tt&tlittttl#ttt#t!*tttttttt/

#include "gl.h"

#include "device.h" .
#include "walk.h"

#include <stdio.h>

#include <math.h>

body _rates(roL_rate.trans_rate.spe.h.invh,ordered _rate,tx,ty,tz,
roll,elev,azimuth)

/* This function computes the body rotation and translation rates. */

vector *rot_rate, /* rotation rate */
*trans_rate, /* translation rate */
*ordered_rate: /* ordered x translation, y translation,
and z rotation rates */

plane *spe; /* support plane in earth coord */

float h{4][4], /* homogeneous transformation matrix */
invh{4]i4], /* inverse transformation matrix */,
*tx,*ty,*tz, /* position of body in earth coordinates *
*roll,*elev.*azimuth; /* body Euler angles */

int  1;

float eta, /* body plane attitude wrt earth plane */
eta d, /* desired body plane attitude */
height, /* distance form CG to est. support plane */
height_d, /* desired height */
gamma, /* angle between desired and present body unit normal vectors */

kx, /* x component of rotation unit vector in body coord */
ky, /* y component of rotation unit vector in body coord */
ka, /* control law gain *’

a,b,c, /* body plane desired unit normal in body coord */
length, /* rotation vector normalizing factor */

celev selev telev, /* sine.cosinetangent of elev */

croll, sroll,cazim,sazim, /* sin and cos of roll and azimuth *’
m;

*

plane spb: /* support plane in body coordinates *
vector db_unit_norm, /* desired body plane unit normal in earth coordinates */
trans rate e, /* Translation rates in earth coordinates *,

rot_rate e; /* Rotation in body Euler rates *-
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/* body rates.c *,

/™ Calculate the body plane attitude. (level ground assumption')* ’
eta = 0.0;

/" Calculate desired body plane attitude {level ground assumption!)*/
eta d = eta:

/* Calculate the desired body clearance. (level ground assumption!)*
height d = HO:

/* Calculate the support plane coefficients in body coordinates. *
/* [spb] T = ispe; T *h */

spb.a = spe->a * h[0}{0] - spe->b * h{1j[0" + spe->c * h;2'[0 + spe->d * h'3./0};
spb.b = spe->a * h[0][1] + spe->b * h[1[1' + spe->c * h 2 |1] + spe->d * h:3 1;;
spb.c = spe->a * hi0|[2| < spe->b * h[1]'2] ~ spe->c * h{2][2 + spe->d * hi3|(2’;
spb.d = spe->a * h[0/[3] ~ spe->b * h{1}[3 + spe->c * h'23 + spe->d * h'3 3

/

/* Height of body CG above support plane *,
height = spb.d:

* Calculate desired unit normal for the body plane in earth coord. */
m = sqrt(spe->-a * spe->a + spe->b * spe->b);
* check for division by zero */
if (m>0.0)

{
db_unit_norm.x = spe->a " sin(eta d) , m;
db_upit_norm.y = spe->b * sin(eta d) / m;
}
else
{
db_unit_norm.x = 0.0;
db_unit_norm.y = 0.0;
}

db_unit_norm.z = cos(eta d);




/* body rates.c *

/* Transform the desired unit normal vector of the body plane
from earth to body coordinates. [a,b.c/T=invhr*b_unit_norm *

/* Note: invhr is the inverse of the rotational transformation
submatrix (first three rows and columns of h). */;

a = invhi0:[0]*db _unit norm.x + invh{0}{1{*db _ unn _norm.y +
mvh0 21"db unit _norm.z:

b = invhi1;{0’*db_unit_norm.x + invh|1]{1}*db_unit_norm.y +
invh-1 2]"db unit_norm.z;

¢ = invhi2.0/*db _unit_norm.x + invh{2|{1]*db_unit_norm.y -
invh 2 | 2]"db unit_norm.z;

/* Control law yielding an exponential response */
/* d gamma/dt = -ka * gamma */
ka = 1/TIME_CONSTANT 1,

gamma = acos(c);

length = sqrt(a*a + b*b);

if (length < .00001)

{
kx = 0:
ky = O:
}
else
{

* components of rotation unit vector in body coordinates *
kx = -b'length;
ky = a/length;

}

/* Calculate rotation and translation rates */
trans rate->z = -ka * (height d - height):
rot_rate->x = -ka * kx * gamma;

rot_rate->y = -ka * ky * gamma;

* Rate = dt * acceleration + old rate */

trans _rate->x = DELTA_TIME * (ordered rate->x - trans rate->x)/
TIME CONSTANT 2 + trans _rate->Xx;

trans rate->y = DELTA TIME * (ordered _rate->y - trans_rate->y)/
TIME CONSTANT 3 - trans _rate->y;

rot _rate->z = DELTA _TIME * (ordered rate->2 - rol_rate->z)/
TIME COI\STANT 3 + rot_rate->z;

* Conversion to Earth coordinate translation rates. */

croll = cos(*roll);

sroll = sin(*roll);

telev = tan(*elev);
celev = cos(*elev);
selev = sin(*elev);
cazim = cos(*azimuth);
sazim = sin{*azimuth);
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* body rates.c */

trans rate e.x = trans rate->x * croll*cazim +

trans rate->y * (cazim®*sroll*selev - sazim*celev) -~

trans rate->z * (sazim®*selev — cazim®*sroll*celev):
trans _rate e.y = trans rate->x * croll*sazim +

trans rate->y * (sazim*sroll*selev — cazim*celev) +

trans rate->z * {cazim*selev ~ sazim*sroll*celev);
trans rate e.z = -trans_rate->x * sroll +

trans rate->y * croll*selev ~

trans rate->z * cazim*celev;

/* Conversion to body Euler rates */
rot_rate e.x = rot rate->x + rot rate->y * telev * sroll +
rot_rate->z * telev * croll;
rot_rate e.y = rot_rate->y * croll - rot_rate->z * sroll;
rot_rate_e.z = rot_rate->y * sroll / celev +
rot rate->z * croll / celev:

/* Integration routine */

*tx —= trans rate e.x * DELTA TIME:
*ty ~= trans _rate e.y * DELTA TIME:
*tz += trans_rate:e.z * DELTA TIME;
*roll ~= rot_rate_e.x * DELTA TIME:
*elev + = rot _rate ey * DELTA TIME;
*azimuth + = rot_rate e.z * DELTA TIME:

/* Update the H matrix */

croll = cos(*roll);

sroll = sin{*roll);

telev = tan(*elev);
celev = cos(*elev);
selev = sin(*elev);
cazim = cos(*azimuth);
sazim = sin(*azimuth):

1l
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;* body _rates.c */

h{0j[0; = croll*cazim:

h{0}[1; = cazim™sroll*selev - sazim*celev:
h{0}|2; = sazim*selev + cazim*sroll*celev:
hi0}[3] = *tx;

h{1]|0] = sazim*croll;

h{1][1] = cazim*celev + sazim*sroll*selev;
h{1][2] = sazim™sroll*celev ~ cazim*selev; .
h{1]{3] = *uy:

h[2][0] = -sroll;

h{2]{1] = croll*selev;

h{2}{2] = croll*celev;

h(2][3] = *e:
hi3jjo] = 0.0;
hi3)|1] = 0.0;
his}(2] = 0.0;
his)|3 = 1.0;

’* inverse homogeneous transform matrix *;

for (i=0; i<3; i~=)

for (j=0: j<3; j++)
{

invhiilj] = hij]i;

invh/3|(i] = 0.0;
invh(i}'3] = -(h0}{i*hi0}[3] + hi1][i-*h;1](3] ~ h{2][i*h[2]{3)):

invh{3][3 = 1.0; -
} /* end of body rates *,
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This is a function for the iris 2400 program walk.c.
con_work vol.c

Relle Lyman 19 Apr 1987

#include "gl.h"
#include "device.h"
#include "walk.h"
#include <stdio.h>
#include <math.h>

con_work vol{cwv.b_footpos,leg status,warning)

FRRKRAB IR AR SRR AR R R R E R R AR KR TR R KRR RN XA AR Rk k kR ko !
/

/* This module will compute a new constrained working volume for

improved stability on rough terrain. Currently all values are
set for a perfectly flat support plane. Dimensions are
expressed in cm. */

work_vol ¢wv|7; /* constrained working volume in body coordinates */

vector b footpos'7:;; /* foot position in body coordinates */

int leg status!7]./* status of leg (supporting, lifioff, transfer.
- L p

placement) *’

the working volume *,

{

- int i;

*warning = OFF:
for (i=1;i<T;i++) /* check each leg */
{
if (leg_statusi == SUPPORTING)
{
if ((b_footposiij.x < ewvli].x.min)i|
(b footposli .x > ewvl|i].x.max)||
(b_footposiji.y < cwvlil.y.min)|
(b _footpos'i .y > ewvli].y. max)ji
(b footposli;.z < ewv|ii.z.min})’
{b _footposi.z > cwvli.z.max)) ,* outside limits
{
*warning = ON;
}
}
}

*
'
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/* con work vol.c

*

if (*warning == ON)

{

pushmatrix{);
pushviewport();

viewport (0,130,0,80);
ortho2(0.0,130.0,0.0.80.0):
color(RED);
rectfi(10,10,130.70);
color(BLACK):
cmov2i(10,30);

charsur(" OUTSIDE CWV");

popviewport();
popmatrix();
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This is a function for the iris2400 program walk.c.
opt_period.c

Relle Lyman 29 Apr 1987

EEEERERBXXKEE R NS XS AR XX EE R ABXR AL SR AR E AKX AN A AR E XK KT XX TR RN KRS

#include "gl.h"
#include "device.h"
#include "walk.h"
#include <stdio.h>
ginclude <math.h>

optimal period(legphase,b footpos,rot_rate,trans rate,cwv,leg status,period)
/* This function computes the optimal period for walking. */
vector *rot _rate.  /* body rotation rate */

*t,rans._race. /* body translation rate *,
b footposi7': '* position of foot in body coordinates */

work vol cwv 7;:  /* constrained working volume

float legphase|7:, /* phase of leg * '
*period; /* body support period */

int leg status|7]; /* status of leg O = supporting *,
{

vector b_footvel;  /* foot velocity */

float fx.fy.fz, /* foot position */
tmin. /* minimum temporal kinetic margin */
tx,ty,tz, /* temporal kinetic margins */
d, /* distance to cwv limit */
speed, /* magnitude of body velocity */

fs_period, /* forward support period */

bs period, /* backward support period */

min fs_period, /* minimum forward support period */
min_bs_period, /* minimum backward support period */
fs_phase, /* forward support phase */

bs phase. /* backward support phase */
mVvX.mvy,mvz;

int i
minleg;

static int gait=FORWARD; /* Wave gait direction *,
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%

optimal period *,

™ Initialize variables *

tmin = LONG TIME;

min fs period = LONG TIME:
min_bs_period = LONG _TIME:

/™ For each leg compute the maximum instantaneous support period. */
for (i=1: i<T; 1+ +)
{
* Support check */
if (leg_status:ij == SUPPORTING)
{
/* Compute foot velocity. */
b_footvel.x = -(trans_rate->x)—(rot_rate->z * b_footposii|.y)
-(rot_rate->y * b _footpos i .z);
b_footvel.y = -(trans_rate->y)-(rot _rate->z * b footpos|i}.x)
+(rot_rate->x * b_footpos|i|.z):
b footvel.z = -(trans_rate->z)+(rot rate->y * b footpos'i .x)
-(rot rate->x * b footpos i .y});

"* Check to see if foot is in cwv. *
fx = b footpos i'.x;
fy = b footposii.y;
fz = b _footpos:i .z:
if ({(fx< ewv.i x.min):(fx> cewv!i.x.max)]
(fy< ewvi.y.min);:{fy> cwvi.y max)!
(fz< cwv i'.z.min)| {fz > cwvlii.z.max)} /* outside cwv *;
{
tmin = 0.1:
}
else
{
/* Compute distance to x limit and the temporal
kinetic margin in the x direction. */
if (b footvel.x > 0.0)
{
d = ewvij.x.max - fx;
tx =d /b footvel.x;
}
eise if (b _footvel.x < 0.0)
{
d = fx - cwv'il.x.min;
tx =d /-b _footvel.x:
}
else
{
tx - LONG TIME:

}
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/* optimal period */
/* Check for minimum value. */
if (tx<tmin)
{

. tmin = tx;

}

/* Compute distance to y limit and the temporal
kinetic margin in the y direction. */
if (b_footvel.y > 0.0)

d = cwvlij.y.max - fy;
ty =d / b_footvel.y;

}

else if (b_footvel.y < 0.0)

d = fy - cwvli].y.min;
ty = d / -b_footvel.y;
}

else

{
ty = LONG TIME;

/* Check for minimum value. */
if {ty<tmin)

tmin = ty;

}

/* Compute distance to z limit and the temporal
kinetic margin in the z direction. */
if (b_footvel.z > 0.0)

{

d = cwvli].z.max - fz; ,
tz =d / b_footvel.z; \

else if (b_footvel.z < 0.0)

d = fz - cwvl|i].z.min;
tz =d /-b_footvel.z;

} i

else
tz = LONG TIME;

/* Check for minimum value. */
if (tz<tmin)

{

tmin = tz;

} /* end inside cwv */
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* optimal_period */

,* Compute the support phase for forward and backward gaits. *:
fs_phase = legphaseji /BETA;
bs phase - (BETA - legphaseli|), BETA;

/* Compute support period. */
fs_period = (tmin-0.1}/(1.0 - fs_phase);
bs_period = (tmin-0.1)/(1.0 - bs_phase);

/* Find the minimum support period. */
if (fs_period < min_fs_period)

{

min _fs_period = fs_period;
}
if (bs_period < min_bs period)
{

min_bs_period = bs_period;
}

} /* end support check */
} /* end leg loop */

/* Choose gait. */
speed - sqrt{trans_rate->x * trans rate->x +
trans rate->y * trans rate->y);

if ((speed - OUTER _LIMIT)&&(trans _rate->x > INNER LIMIT))
{

gait = FORWARD:
, -
else if ((speed<OUTER _LIMIT)&& (trans_rate->x< -INNER _LIMIT))

gait = BACKWARD;
H

! else
L {
)
| if (gait == FORWARD)

: *period = min fs_period;

else

{
*period = min _bs_period;
}

} /* end optimal period */

/* No gait change. */
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This is a function for the iris 2400 program walk.c.
decelerate.c

Relle Lyman 04 May 1987

tttttttl‘t*lt!t‘iitttt#****t*ttt*t*t*t*****ttt#****tlttt‘*t**t###*tt/

#include "gl.h"
#include "device.h"
#include "walk.h"
#include <stdio.h>
#include <math.h>

decelerate(rot_rate,trans_rate,period,slow flag,min_period)

;' This function computes the foot transfer rate and slows the
vehicle if the maximum rate is exceeded. */

vector *rot_rate. /* body rotation rate */
*trans rate: ;* body translation rate */

float *period. /* optimal period for the leg cycle */
*min period: /* minimum leg period */

int  *slow flag: ’* flag indicating vehicle has been slowed. */
int iy

float transfer_time; /* time from liftoff to placement */

if(*period < *min_period) /* slow down */
{

*slow flag = SLOW;

*period = *min_period;

trans rate->x *= .95;
trans rate->y *=.7;
trans rate->z *= .95;
rot rate->x *= .95;
rot _rate->y *= .95;
rot_rate->z *=.7;
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"* decelerate.c */

, * display warning on screen */
pushmatrix();
pushviewport();
viewport (200,330,0.80); '
ortho2(200.0,330.0,0.0,80.0);
color(YELLOW);
rectfi(210,10,330,70); -
color{BLACK);
c¢mov2i(210,30);
charstr(" DECELERATION ");
popviewport();
popmatrix();
}

else

{
*slow flag = NORMAL;
}

} -* end of decelerate*/
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This is a function for the iris2400 program walk.c.
leg_phase.c

Relle Lyman 24 Aug 1986
‘.*Itttt*l*t*t*I‘*ﬁ*‘***‘**#*t**#***t**l‘**t#*‘*t!t*tt***l**/
#include "gl.h"
#include "device.h"
#include "walk.h"
#include <stdio.h>
#include <math.h>

leg phase( legphase, rel legphase, period)

/* This function computes the phase for each leg. */

float legphase!7, /* phase of leg */
rel_legphase(7,, /* relative phase of leg */
*period; /* body support period */

static float bodyphase = 0.0; /* kinematic phase of body */

*

float  modulus one(); /* modulus one function */

int i

= Calculate new body phase. */

bodyphase = modulus_one(bodyphase + DELTA TIME/(*period) ):
/* Calculate new phase for each leg. (mod1) */

for (i=1; i<7; i+ )

{

legphase,i; = modulus_one(bodyphase - rel_legphase|i});

}

} /* end of leg_phase */
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This is a function for the iris2400 program walk.c.
ft_traj.c

Relle Lyman 19 Apr 1987

**‘*#i*t!ltl‘ttttttii'tlt‘tt#tti-tI'ttt‘tltttttl“t‘t“*ttt#t/

#include "gl.h"
#include "device.h"
#include "walk.h"
#include <stdio.h>
#include <math.h>

foot_trajectory(legphase,period,leg_status,footpos.b footpos,fh,
oldfh,invh,h,cwv, trans rate,rot _rate,selected gait)

/* This function calculates the trajectory for each foot. */

float legphase[7!, /* Phase of individual leg */

*period, /* Optimal period */
hi4l{4], /* Homogeneous transformation matrix */
invh|4i{4;  * Inverse transformation matrix */

vector footpos!7!,
b_footpos|Tj,
fh 78, /* Foothold selection (earth coordinates) */
oldfh'7}, /* O foothold selection (earth coordinates) */
*trans_rate, /* Body translation rate */
*rot_rate; /* Body rotation rate */

work vol cwv 7}

int  leg statusi7i. /* State of individual leg */
*selected gait; /* Desired tripod gait */

{
float trans time, /* Time required to go from leg liftoff to leg touchdown */
end lift phase, /* Point in transfer phase where liftoff ends */
begin_place phase, /* Point in transfer phase where placement begins */
trans phase; /* Leg transfer phase */

static int  liftoff flag{7|=OFF, /* Indicates first time entering the
subroutine in the current leg cycle. */
transfer flag|7'=OFF,
place flagi7|=OFF;

static vector d_footpos{7; /* Desired foot position */

int i /* Leg number */
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.* foot trajectory */

/* Calculate the time required to move a leg from liftoff to
touchdown. (Transfer time) */
trans time = (1.0 - BETA) * _ABS(*period):

/* Calculate phase points marking change of transfer mode
(direction). Note: Modify later to account for transfer
time. */

end lift_phase = 0.2;

begin_place phase = 0.8;

/* For each leg */
for (i=1: i<7; i+ +)
{
/* Calculate transfer phase. */
/* (lift = 0.0 place =1.0)*/
if (*period < 0)
{
trans_phase = (1.0 - legphaseii])/ (1.0 - BETA);
}
else
{
trans_phase = ( legphase|i’ - BETA)/(1.0 - BETA);
}

‘* Find the leg transfer state. */
if (trans phase < 0.0)
{
leg status|i’ = SUPPORTING;
support_trajectory(liftoff flag,place_flag,transfer flag,footpos,
b footpos,invh.i);

else if (trans_phase < end_lift_phase)

leg_status|ij = LIFTOFF;
lift_trajectory(liftoff flag,place flag.transfer_flag,footpos,
b footpos,invh,&trans _time,&trans phase,&end lift phase,i);
}

else if (trans_phase < tegin place phase)
{
leg_status|ij = TRANSFER_FORWARD:
transfer _trajectory(liftoff flag,place flag,transfer fiag,footpos.
b _footpos,h,invh,&trans time,&trans phase,
&begin place phase,i,cwv,trans raterot_rate,fh.oldfh.
period selected gait);




/* foot trajectory */

else . * end place_phase < trans phase < 1.0 */

{
leg statusi = PLACEMENT;

placement _trajectory(liftoff_flag,place flag.transfer flag footpos,
b_footpos,invh,&trans time,&trans phase,i);
}

} ,

} /* end of foot _trajectory */
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+* foot trajectory */

/'t#t‘ttl#*tx*t*‘t****ttﬁittt"#“t*t*tt*tlt*#ttlttlt*t**ll"ttttt*ttttttt#tﬁt !

lift_trajectory(liftoff_flag,place flag.transfer flag.footpos.b footpos.
invh.trans_time,trans_phase.end lift_phase leg number)

/* This function calculates the trajectory of the foot while it is
being lifted from the ground. It is called from foot trajectory().*/

vector footposi7], /* Present foot position in earth coordinates */
b _footpos(7]; /* Present foot position in body coordinates */
float  *trans time,
*end lift phase,
*trans_phase,
invh-4]i4';  /* Inverse homogeneous transformation matrix */

int liftoff flag|7., /* Indicates the first time entering subroutine
in the current leg cycle. */
transfer flag(7],
place flag:7},
leg_number;

float lift time;
int I

static vector d footpos'7: .* Desired foot position
in earth coordinates */

i = leg_number:

/* Calculate the desired footposition. */
if ( lifoff_flagiil != ON)
{
d footposii|.z = footpos|i].z + FOOTLIFTHEIGHT;
liftoff flagiil = ON;
ransfer flagji) = OFF;
place flaglil = OFF;
}

‘* Calculate the time required to reach the desired height
from the present foot position. *;

lift_time = *trans time * (*end lift _phase - *trans_phase):
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+* foot_trajectory *’

,* Calculate the new foot position. (Earth Coordinates) *,
if (DELTA TIME < lift_time)
{

footposiil.z ~= (d_footpos|ii.z - footposii|.z)
* DELTA TIME / lift_time;

}

else /* Last increment of time */

{
footposii).z = d_footposii).z;

,/* Transform to body coodinates. */,
/* b _footpos:ii]T = invh * {footposfi||T */
transform point{b_footpos.invh.footpos.i);

} /* end of lift _trajectory */
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/* fool trajectory */

/itlt*t‘i‘tttt‘t*ttttttttlt*ltt*it'*tx#&t‘#ltx*tttttt*#tttxt‘t**¥ti#t*t*#tt#t :

/

transfer trajectory(liftoff flag,place flag.transfer flag footpos.
b_footpos.h,invh. trans_time,trans phase.begin place phase,
leg_number,cwv,trans rate,rot_rate,fh,oldfh,period,selected gait)

/* This function calculates the trajectory of the foot during the
phase in which the foot is transfered forward. The function
is called from foot trajectory().*/

vector footpos 7], /* Present foot position in earth coordinates */
b footpos|7], ,;* Present foot position in body coordinates */
fhi7]. /* Selected footholds (earth coordinates) */
oldfh|7;,  /* Old selected footholds (earth coordinates) */
*trans rate, ;* Body translation rate */
*rot rate; /* Body rotation rate */

work vol ¢wv{7: ,* Constrained working volume in body coordinates */
float  “trans time,

* begin-_-place_ph ase,
*trans_phase,

* period. /* Optimum period of gait */
h'4 4, /* Homogeneous transformation matrix */
invh 4/'4]; ,* Inverse transformation matrix ¥/

int liftoff _flag{7], /* Indicates the first time entering subroutine
in current leg cycle */
transfer flag|7].
place flag7].
*selected gait, /* Desired tripod gait */
leg_number:

float trans fwd time, /* Time remaining in the transfer forward phase */

X, vy, /* Velocity of cockpit in body coordinates */
rel_hd, /* Relative heading of cockpit velocity */
proj_dist, /* Projected distance forward for new footholds */
min_time; /* Minimum time to reach any cwv limit */

int i

vector cwv_velocity, /* Instantaneous velocity of the center of
the cwv (earth coodinates) */
time_to limit, /* Time to reach the cwv limits *,
bfh{7 ", +* Selected foothold in body coordinates */
bd footpos|7}: '* Desired foot position in body coordinates */

static vector d footpos 7,: /* Desired foot position in earth coordinates */

145




. e e e B

B O N X i s X o A e e e T DO A A A L

1* foot trajectory */
i = leg_number:

if (*selected gait == FTL_GAIT)
{
if (transfer_flagii| != ON)
{
transfer flagjij = ON;
liftoff flagji] = OFF;
place flag[i| = OFF;

/* Save foothold position. */
oldfh|i].x = fhii].x;
oldfh|i].y = fhii}.y;
oldfhii].z = fhyi].z;

proj dist = LENGTH * 0.21666;

switch (i)
{
case 1: '* find new left foothold *,
VX = Lrans_rate->Xx;
vy = trans_rate->y - rot_rate->z * HALFLENGTH:
rel hd = atan2(vy,vx):
bfhil.y = 82.0;
bfh:1:..x = HALFLENGTH+proj dist*ccs(rel hd) (82.0-
proj dist*sin(rel_hd))*can(rel hd}):
bfh:1}.z = -160.0;
/* Transform to earth coordinates. */
/* ifhiiT = h * {bi]T */
transform _point(fh,h,bfh,1);
break:
case 2: /* find new right foothold */
VX= trans_rate->X;
vy = trans_rate->y + rot_rate->z * HALFLENGTH;
rel hd = atan2(vy,vx):
bfh|2].y = -82.0;
bfhi2!.x = HALFLENGTH+proj_dist*cos(rel _hd)-(-82.0-
proj_dist*sin(rel_hd))*tan(rel_hd):
bfh(2].z = -160.0;
/* Transform to earth coordinates. */
/% 1T = b * biIT */
transform _point(fh,h,bfh,2);

break;
default: /* back leg uses old front leg foothold */
fhiil.x = oldfh[i-2].x;
fhii..y = oldfh[i-2].y;
fhlij.z = oldfhi-2:.z;

146




/* foot_trajectory */

*x

/* determine the desired foot position =/
d_footposiij.x = fhfi].x;
d footpos|i .y = fhli].y;
d footposii'.z = fhli .z;
}

}
. else /* FWD WAVE GAIT Calculate a new desired foot position

at each time increment. */

/* Calculate the desired touchdown point. */
/* Future change note: Change from cwv center to midstance. */

/* Calculate foot velocity at center of cwv (body coordinates) */
cwv_velocity.x = trans rate->x - rot_rate->z * cwvli|.y.center
+ rot_rate->y * cwvlil.z.center:
cwv_velocity.y = trans_rate- >y ~ rot rate->z * cwv i.x.center
- - rot_rate->x * cwv{i .z.center:
cwv velocity.z = trans rate->z - rot_rate->y * cwviil.x.center
+ rot _rate->x * cwvlil.y.center:

* .

/* Calculate the time to reach the limits of the cwv. ¥,

if (ewv_velocity.x < 0.0)
time to limit.x = ( cwv il.x.min - cwv i .x.center)/cwv velocity.x;

!

else if {cwv velocity.x > 0.0)

{

- time to limit.x = ( ewv:i.x.max - cwv|i].x.center)/cwv velocity.x;

}

else

{
time to limit.x = LONG _TIME;
}

if (cwv_velocity.y < 0.0)

{

time_to_limit.y = ( cwvii].y.min - cwv'ii.y.center)/cwv velocity.y:

else if (cwv _velocity.y > 0.0)

{

time _to_limit.y = ( cwv'i].y.max - cwv'i’y.center) cwv velocity y;

else

{

time to limit.y

}

LONG TIME:
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foot trajectory *:

if (ewv _velocity.z < 0.0)

{

time to limit.z = ( ewvlij.z.min - cwvi_z.center) cwv velocity.z;

else if (cwv _velocity.z > 0.0)

{ time to_limit.z = ( cwvl|ij.z.max - cwvli|.z.center),cwv_velocity.z;
llse

{ time to limit.z = LONG TIME:

}

/* Determine the minimum time to reach the cwv Jimit. */
min time = time_to_limit.x;

if (time to_limit.y < min_time)

{ min _time = time_to limit.y:

i}f (time_to limit.z < min time)

{ min_time = time to limit.z;

}

'* Calculate the desired touchdown point in body coordinates. */
+* Note: This point changes if the body is in motion. *,

bd footposi.x = cwv|i|.x.center + cwv velocity.x * min time * .9
bd footposi .y = cwvlil.y.center + cwv velocity.y * min time * .9;
bd;footpos i.z2 = cwvii.z.center — cwv velocity.z * min __time *.9

= *

1

/* Transform to Earth coodinates. */
+* id footpos1 T = h * |bd footpos|i||T */
transform _point(d footpos,h,bd footpos,i);

/* Calculate the time remaining in the transfer forward phase. */
trans fwd time = *trans_time * (*begin_place phase - *trans phase);

/* Calculate the new foot position. (Earth Coordinates) */
if (DELTA TIME < trans fwd time)
{
footpos i;.x += (d_footpos i .x - footposii .x)
* DELTA TIME ; trans fwd time:
footposi.y += (d footposi'.y - footposi .y)
* DELTA TIME , trans fwd time;
' *

footpos ij.z = footposiij.z: . * Level ground assumption’
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:* foot trajectory *

else /* Last increment of time *

{

footposii .x = d_footpos|i].x;

* footposii .y = d_footposlij.y:
footpos|i..z = footposiii.a; /* Level ground assumption! */
}
/* Transform to body coodinates. */
/* b_footpos{i|IT = invh * [footpos/il' T */
transform_point(b_footpos,invh.footpos,i);
} /* end of transfer trajectory */
=
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¥k H *
/¥ foot_trajectory *,

[‘tttit‘l‘ttitlttttil*!ttt#t##*‘i*tt‘ti"tlttttt‘l‘tﬂ“i‘lt‘"It.““l‘l“.l./

placement trajectory(liftoffl flag.place flag.transfer flag.footpos.
b_footpos.invh.trans_time.trans_phase. leg number)

/* This function calculates the trajectory of the foot while it is
being lowered from the ground. It is called from foot trajectory().*/ .

vector footpos|7], /* Present foot position in earth coordinates */
b_footpos|7]; /* Present foot position in body coordinates */

float  *trans_time,
*trans_phase,
invh[4'{4: /* Inverse homogeneous transformation matrix */

int liftoff flag|7!, /* Indicates the first time entering subroutine
in current leg cycle */
transfer_flagi7j,
place flag7’,
leg_number:

float place time:

int g

static vector d _footpos|7j; /* Desired foot position in earth coordinates */
i = leg_number: b

/* Calculate the desired foot position. */
if ( place _flagli] != ON)
{

d footpos|i].z = footpos|i].z - FOOTLIFTHEIGHT;
liftoff flagji; = OFF;
transfer flagli)| = OFF;
place flag'ij = ON:
}

; /® Calculate the time required to reach the desired height
i from the present foot position. */
place time = *trans time * (1.0 - *trans_phase);

/* Calculate the new foot position. (Earth Coordinates) */
if (DELTA TIME < place time)
{ .
footposji..z += (d_footposii.z - footpos|i .z)
* DELTA TIME / place_time;
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/" foot trajectory */

else ;* Last increment of time *,

{
footpos i .2 = d_footpos|i|.z;
}
/* Transform to body coodinates. */
/* [b_footpos|ij,T = invh * {footpos|i/|T */

transform _point(b_footpos,invh,fontpos,i);

} /* end of placement_trajectory */
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/* foot trajectory *,

j‘tt‘tt#t‘#‘**#t‘l!ttt‘*“ti**‘*t**litt**t*ttt:txttltt*t*tl:*I**‘lt*ttttttt#tt/

¢

support_trajectory(liftoff_flag,place _flag,transfer_flag.footpos,
b_footpos,invh,leg_number)
/* This function calculates the trajectory of the foot during the
foot support phase. It is called from foot _trajectory().*/ .

vector footposi7], /* Present foot position in earth coordinates */
b footpos|7}; /* Present foot position in body coordinates */

float  invh[4|{4]; /* Inverse homogeneous transformation matrix */

int liftoff flag{7|, /* Indicates the first time entering subroutine
in current leg cycle */
transfer_flagi7],
place flag|7],
leg_number;

int &

/* In this phase the foot is kept stationary on the ground. It
is assumed that the foot will not slip or move accidently. */

i = leg number;

/* Transform foot position to body coodinates. */
/* b footposii T = invh * footpos(i||]T */
transform_point(b_footpos,invh,footpos,i);

/* Turn off flags. *,
liftoff_flagii: = OFF;
transfer flagii = OFF;
place flagjij = OFF;

} /* end of support_trajectory */
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This function is for the program walk.c on the iris-2400.
conwalk.c
Based in part on J.H.Kessler’s
R. L. Lyman program "conwalker.c"
24 Apr 1987

**#**tlt*tttttl***tt***tt#**###**#**tttt“*ﬁ*#*****t##‘*#‘tltt*tt***/

#include "gl.h"

#include "device.h"

#include "walk.h"

/*  This function calls up the walker from constructwalker (with legs
already properly positioned) and then rotates and translates it as
commanded. */

/* Note: Due to the limited number of bit planes available

four separate walkers are constructed, one for each viewing

quadrant. The walker for each quadrant is drawn from furthest

component to nearest. This provides a quasi- Z buffer effect
while in double buffer mode. */

makewalker(machineobject,d1,d2,theta.knee,gamma,alpha transrot _tag,
tr_end tag,walker leg thighobj,actuatorobj,shinobj,
legmovetag,thighmovetag.actmovetag,shinmovetag ,tx,ty,tz,
roll,elev,azimuth,hx,hy hz 14)

Tag transrot_tag4 .tr_end tag|4|legmovetag!|/4],
thighmovetagj|i2;[4],actmovetag[][2i[4},shinmovetag|]{2}[4];

Object machineobject|4],walker{4|,thighobj||[2]{4],actuatorobj|j|2]!4],
shinobj{|2] 4],leg{][4};

int d1/1,d2{],knee{j[2] ;
Angle thetaj|,alpha.,gammal|};

float tx,ty,tz,roll,azimuth,elev,
hx 7{.hy{7},hz|7],14|7);

int n;
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* conwalk.c *’

constructwalker{walker,d1,d2 knee,alpha,gamma.theta.leg,thighobj,
actuatorobj,shinobj.legmovetag,thighmovetag.actmovetag,
shinmovetag, hx.hy,hz 14) ;

for (n=0; n<4: n++) /* Rotate and translate the walkers in each
quadrant. */
{

machineobject[n|=genobj();
makeobj(machineobject|n]);
pushmatrix() ;

/* Note: Each walker is built on the origin. Rotations are done
before translating to the proper location. */
transrot tagin/=gentag();
maketag(transrot _tagin!);

translate(tx,ty,tz);

rotate((int) (elev * 573),’Y");
rotate((int) (roll * 573).°X’);
rotate((int) (azimuth * 573),°2’);

tr_end _tagin!=gentag();
maketag(tr_end tagin:);

callobj(walker|n]); ’

popmatrix() ;
closeobj(});
} /* end quadrant loop */
} * end of makewalker */

T e
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/* conwalk.c *-

,-.‘..“““‘-‘l““‘“““‘““.“‘*‘“.*“‘***""t“"*""**‘*“"““‘tt .

makeground(groundobject)

/* This function creates a checkerboard groundplane below the ASV object.*’

Object *groundobject;

. {
Object squareobject;
Tag transqrtag;
static int
ground1(4)(3 ={{1000.-500,0},{1000,500.0},{-1000,500,0},,{-1000,-500,0} },
ground2|4][3,={{2000,-1000,0},{2000,1000,0} ,{-2000,1000,0} {-2000,-1000,0} },
square|4]{3]={{0,-100,0},{0,0,0},{-100,0,0},{-100,-100,0} };
int i
float tx,ty:
squareobject :genobj(}:
makeobj(squareobject);
color( WHITE});
polfi(4,square);
closeobj():
e
*groundobject=genobj();
makeobj(*groundobject);
PN color(RED); /* fill outer background squares */
polfi(4,ground?2);
color(GREEN);  /* fill inner background squares */
polfi{4,ground1);

for (1=0; i<40; i++)
{

for (j=0; j<20; j++)
if ((i+j)%2 < 1)
{

tx=(i-20)*(-100.0);
ty=(j-10)*(-100.0);
pushmatrix();
translate(tx,ty,0.0);
callobj(squereobject). /* placs the white squares */
popmatrix();
} /* endif */
} /* end for j */
} /*endfori */
closeobj();
} /* end makeground *’




i* conwalk.c *,

/'tt-tttt‘i*tttt‘itt‘t#t*t*tt‘tt*#ttttitt#‘**‘l#t*ttitttttttti**tt#**ttttt“t/

constructwalker(walker,d1,d2 knee,alpha,gamma,theta,leg.thighob;j,
actuatorobj,shinobj,legmovetag,thighmovetag.actmovetag,
shinmovetag, hx,hy,hz,14)

/* This is where the walker is made. Here each part is assembled
and then the parts are put together. This assembled walker is
then rotated and translated in makewalker which is called by
the main program. */

Tag legmovetag|||4; ,thighmovetag!](2](4],actmovetag||[2][4],
shinmovetag|||2][4);

Object walkeri4..legi!{4 ,thighobj|||2|(4],actuatorobj|i{2]{4],shinobj}|;2][4';
int d1..,d2" .knee:}{2|;
Angle alpha|/,gamma|],theta;

float hx|7!,hy|7],hz(7], /* leg pivot position */
47

{
Object body,head.eye.boxobj|7} :

static float legx|7|={0.0.155.0.155.0,0.0,0.0,-155.0,-155.0},
legy'7.={0.0,82.0,-82.0,82.0,-82.0,82.0,-82.0},
legz|7 ={0.0.0.0,0.0,0.0,0.0,0.0,0.0};

Coord x,y,z ;
int i,j,k,n,legnum ;

static int
/* Coordinates for building the body of the asv */
blackbody|4![3]={{208,50,22},{206,-50,22} {206.-30,-101} ,{ 208,30,-101} },
Ibodyarry|4[3]={{-200,30,-101},{-200.50,22} ,{206,50,22} ,{ 206,30,-101} },
rbodyarry|4[3]={{-200,-30,-101},{206,-30,-101} {206 -50,22} ,{-200,-50,22} },
tbodyarry4][8]={{-200,50 ~2},{-200,-50,22},{208,-50,22},{206,50,22} },
bbodyarry|4]{3]={{206,-30,-101} {-200,-30,-101},{-200,30,-101},{ 208.30,-101} },
backbodyarry|4'[81={{-200,30,-101},{-200,-30,-101},{-200.-50,22} {-200,50,22} },
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* conwalk.c *

1* Coordinates for building the hydraulics housing structure *,

front rt_top 4][3]={{27,-25.16},{38,-25,-13},{38,-13,-13} {27,-13,16} },

front _rt_bttm|4][3]={{38,-25.-13},{38,-25,-46},{38,-13.-46},{38,-13.-13} }, L

rt_interior 5!{8|={{20,-25,38},{38,-25,-13} {38,-25.-46} {-38.-25.-46} {-38,-25,38} },

rt_side|5'(8)={{-38,-25.38),{-38,-25,-48},{38,-25,-46} {38.-25 - 13} .{ 20,-25,38} },

It interior!5]:S|= {{-38,25,38},{-38,25,-46},{38,25 -46} ,{38,25.-13} {20,25.38} },

. : It “side|5][3]={{20,25,38},{38,25,-13},{38,25,-46},{-38,25,-46} ,{-38.25.38} },
top_box|4]{3;={{20,-25,38},{20,25,38},{-38,25.38} ,{-38,-25.38,} }
back_box'4][3:={{-38,25,-46},{-38,-25.-46} {-38.-25.38} ,{-38,25 38} },
front_top(4|3;={{20,25,38},{20.-25,38},{27.-25,18} {27.25.13} },
front 1t_top|4}|3]={{27,13,16},{38,13.-13},{38,25,-13},{27,25,16} },
front It btum{4) 3|={{38,13.-13},{38,13,-46},{38,25 -46} .{38,25.-13}},
bttm lm[4](31—{{3s 25,-46),{38,13,-48} {-38,13,-46) {-38,25 -46} },
btem rt(4];8]={{38.-25,-46},{38,-13 -46} {-38,-13.-46},{-38.-25-46} },

highbox_top|4]{3}={{-8,-25,88},{8,-25,88},{8,25,88} .{-8.25.88} } .
highbox_front|4](3]={{8,25,88},{8,-25,88},{10.-25.38},{10,25,38} },
highbox _back|4);3]={{-8,-25,88} {-8,25,88) {-10.25,38) {-10,-25,38} },
highbox_rt|4}[8!={{8,-25,88},{-8,-25.88},{-10,-2538},{10,-25,38} } ,
highbox It[4'|8'={{-8,25.88},{8,25.88},{10,25,38},{-10,25,38}},

rt_spar fromM'[S {{79.-13.-20}.{79.-25,-20} ,{79.-25,- 30} ,{79,-13.-30} },
re_spar_topi4 :3'={{79,-13.-20},{38.-13.-19},{38.-25,-19},{79,-25 -20} },

. rt_spar bttm'4'[8 = {{38.-13.-32} {79.-13.-30},{79.-25 -30} {38,-25.-32} },
rt_spar rt'4 3.={{38,-25-32}.{79,-25.-30},{79.-25.-20} {38 -25 -19} }.
rt spar_It'4  3/={{79,-13,-30},{38.-13.-32} {38.-13,-19},{79,-13,-20}},

° lt_spar_front}4/!3|={{79.25,:20},{79.13,-20},{79.13,-30},{79.25,-30} },
It _spar_topi4||8]={{79,25.-20},{38,25.-19},{38.13,-19}.{79,13 -20} },
It spar_btim|4][3}={{38.25,-32},{79,25,-30},{79,13,-30},{38,13,-32} },
It _spar_rt|4]3]={{38,13,-32},{79,13,-30},{79,13,-20},{38,13.-19} },
It spar_It[4){3]={{79,25,-30},{38,25 -32},{38,25,-19},{79,25 -20} },

g -

/* cab construction arrays */
cab_bottom|4][3'={{305,-30,-101},{206.-30,-101},{206,30,-101} {305,30,-101} },
cab_topi4il3 ={{250.33,74},{206,33,74},{206,-33,74},{250,-33,74} },

oo g

cab_fwd support4)|3i~{{305,30,-101},{305,41,-16},{305.-41,-16},{305,-30,-101 } },
cab_fwd lower|4] 3]={{305,41,-16},{318,48.8},{318,-48.8} {305.-41.-16} },
cab_fwd_upper{4||3]={{318,48,8).{302,33,68},{302.-33,68},{318.-48,8} },
cab_fwd _ovhd|4!{3'={{275.33,68},{250,33.74},{250,-33,74}.{275,-33,68} }, \

N

cab rt_support|4;(3)={{305.-30,-101},{305.-41.-16} {206,-41.-16} { 208,-30,-101} },
cab rt lower{4!!3'={{305.-41.-16},{318.-48.8},{206.-48.8},{206.-41.-16} },

cab rt_upper{4){3]={{318,-48,8},{302,-33,68}.{206,-33,68},{206.-48.8} }.
cab_rt_ovhd|4]|3]={{275,-33,68},{250,-33,74},{206.-33,74},{206.-33.68} },
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* conwalk.c *

cab It supportj4’ 3 {{206,30,-101},{206,41,-16},{305,41,-16},{305.30.-101}},
cab It _lower]4’ [3 = {{206,41,-16},{206.48,8},{318,48.8},{305 41,-16} },
cab It _upper 4' 3 ={{206.48,8},{206,33,68},{302,33,68},{318 48.8}},
cab_lt_ovhd'4''3}={{206,33,68},{206,33,74},{250,33.74} {275,33,68} },

cab_aft_support|4]{3]={{206,-30,-101},{206,-41,-16},{206,41,-16},{206,30,-101} },
cab_aft lower|4][3;={{206,-41,-16},{206,-48,8},{206,48,8},{206,41 .-16} },

cab aft _upper|4||3}={{206,-48,8},{206,-33,68},{206,33,68},{206,48,8} }
cab_aft_ovhd|4]|3]={{206,-33,68},{206,-33,74},{206,33,74} ,{208,33,68} },

scanner_fwd lower(4|13|={{302,33,68},{322,33,95},{322,-33,95},{302,-33,68} },
scanner_fwd_upper|4](3|={{322,33,95},{322,33,101},{322,-33,101},{322,-33,95}},
scanner rt[5][3|={{302,-33,68},{322,-33,95},{322,-33,101},{275 -33,101},{275,-33.68} },
scanner_lt/5)|3)={{302,33,68},{275,33,68},{275,33,101},{322,33,101},{322,33,95} },
scanner_aft(4][3!={{275.38,101},{275,33.68},{275 -33,68},{275,-33,101}},

scanner top{4}|3]={{322,33,101},{275,33,101},{275,-33,101},{322,-33,101} };

/* The making of the leg is quite complicated. Each leg consists of an

upper link (thigh), lower link (actuator}. and a shank (shin). These

segments are first defined in a standardized orientation, and are then

rotated and translated into the proper position. This is done by using

2 objects for each segment. The first object is the correctly rotated

segment, and the second object is the correctly translated first

object. Thus the segment is then in the proper position. To hold the .
screen coordinate system fixed the matrix is pushed before each translation

or rotation and then popped after the object is constructed or called. */

for {(n=0; n<4; n++) /* Make a set of legs for each viewing quadrant. .
Each quadrant must have unique tags. */
{
for(legnum=1 ;legnum<7;legnum++)
{

/* Each segment is constructed and positioned */
buildthigh(n,legnum,d1,alpha,thighobj,thighmovetag) ;
buildactuator(n,legnum,d2,alpha,actuatorobj,actmovetag) ;
buildshin(n,legnum, knee,gamma,shinobj,shinmovetag) ;

leg/legnum|in|=genobj();

makeobj(leg|legnum||n]);

pushmatrix();
/* translate(legx|legnum|,legy.legnum’ legzilegnum:) ; *
translate(hx|legnum’,hy|legnum!.hz legnumi) ;

legmovetag;legnum|in;=gentag(); /* The leg is assembled from */

maketag(legmoveugllegnum”n]) /* its parts and the entire leg is */
* then rotated to the proper angle. *,

rotate(chet,aélegnum:,’X‘):

transiate(0.0,14[legnum|,0.0); /* extend leg outward * -




/* conwalk.c */

if (((n > 1)&&(legnum < 5)).
({(n < 2)&&(legnum > 4}))  /* Build the left side first. */
{

- if {legnum > 4) /* Reverse the back legs. */

{

pushmatrix():
rotate(1800,’2’);

color(BLACK);
polfi(5,)t interior);

color(GREEN);
polfi(5,lt_side);
polfi(4,front It _top);
polfi(4.front It btem);
polfi(4,bttm It);

polfi(4,lt_spar front);
polfi{4,lt_spar bttm);
polfi(4,It_spar lt);
polfi(4,lt_spar rt);

color(BLUE);
poifi(4,lt_spar top):

color(BLACK);
polyi(4,lt_spar rt):

color(CYAN) ;
callobj(thighobj{legnum!'1]'n});
callobj(actuatorobjilegnumi|1]in);
callobj(shinobjilegnumj;1]in}};

color{GREEN) ;
polfi(4,rt_spar front);
polfi(4,rt_spar_bttm);
polfi(4,rt_spar lt);
polfi(4,rt_spar rt);

color(BLUE);
polfi(4,rt_spar_top);

color(GREEN);
polfi(4,front_rt bttm);
polfi(4,front rt top);
polfi(4,front_top);
polfi(4,btem rt);
polfi(4,back box);
. polfi(4,top box);
polfi(5,rt_side);
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* conwalk.c */
color(BLACK);
polyi(4.top box);
polyi(5.rt side);
polyi(4.r_spar rt);

color(GREEN);
polfi(4,highbox_front);
polfi(4,highbox_it);
polfi(4,highbox_back);
polfi(4,highbox_rt);
polfi(4,highbox_top);

color(BLACK);
polyi(4.highbox top);
polyi(4.highbox rt};
polyi(4.highbox back):

if (legnum > 4)  /* For reversing the back legs. *,

{

popmatrix() :

}
}

else * Build the right side first. */
if (legnum > 4) /* Reverse

pushmatrix():
rotate(1800.’Z’):
}

color(BLACK);
polfi(5,rt_interior);

color{GREEN);
polfi(5,rt_side);
polfi(4,front_rt_top);
polfi(4,front rt_btim);
polfi(4,bttm rt);

polfi(4.rt_spar bttm);
polfi(4.rt_spar rt);
polfi{4,rt_spar It);
polfi(4.rt spar_front);

color(BLUE]},
polfi(4,rt_spar_top);

‘0“"‘* LN i.'.J‘q_ ’gﬁﬂ‘l.nﬁ.g‘t N} .,.'i,' ,5‘!."!,‘ ‘,l‘q.‘ .

the back legs. *,
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;¥ conwalk.c

* 7

color(BLACK);
polyi(4,rt_spar It):

color(CYAN) ;

callobj(thighobj{legnuml|i1{in});
callobj(actuatorobj{legnum]:1]|n]);
callobj(shinobj|legnumi|{1]in});

color(GREEN) ;
polfi(4,back box);
polfi(4,bttm It):
polfi{4.front top};
polfi(4,front It bttm];
polfi(4 front It top):

polfi(4,lt_spar_bttm);
polfi(4.1t_spar rt);
polfi(4,It _spar lIt);
polfi(4.lt_spar_front);

color(BLUE);
polfi(4.lt_spar_top);

color(GREEN):
polfi(4.top_box);
polfi(5.1t side};

color(BLACK});
polyi(4,top_box);
polyi(5,lt_side);
polyi(4.lt_spar lt):

color(GREEN);
polfi(4,highbox back};
polfi(4.highbox rt):
polfi(4.highbox _front):
polfi(4.highbox 1t);
polfi(4.highbox top);

color(BLACK);
polyi(4,highbox_top};
polyi(4,highbox _It);
polyi(4,highbox_front};
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;¥ conwalk.c */

if (legnum > 4)  '* For reversing the back legs. *

{

i

popmatrix() ;
}
}
popmatrix():
closeobj() :

} /* end of leg loop */
} /* end of quadrant loop */

body=genobj() : /* The body is constructed */
makeobj({body);

color(LTYELLOW} ;

polfi(4,lbodyarry) ; '
polfi{4,backbodyarry) ; )
polfi(4,bbodyarry) ;

polfi(4,rbodyarry) ;

color(YELLOW):
polfi(4.tbodyarry); !

color(BLACK} :
polfi(4,blackbody) :
closeobj(} ;

head=genobj() ; /* construct the head */
makeobj(head) ;

color(YELLOW);

polfi(4,cab _top);

polfi(4,cab_fwd ovhd);

polfi(4,cab_rt ovhd); .

polfi(4,cab It ovhd);

polfi(4,cab_aft ovhd); q

g

color(BLACK); )
polfi(4,cab_bottom);
polfi(4.cab fwd support);
polfi{4.cab rt support);
polfi(4,cab It support);
polfi(4.cab_aft support}; '

Rl ool ot

color(WHITEL};
polfi(4.cab fwd lower);
polfi{4,cab rt lower);
polfi(4.cab It lower);
polfi(4,cab _aft lower):
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i* conwalk.c */,

color(WHITE) ;
polfi(4,cab _fwd upper);
polfi(4,cab rt_upper);

- polfi(4,cab It upper);
polfi(4,cab_aft upper):

color(BLACK) ;
polfi(4,cab_top});
polyi(4,cab fwd lower);
polyi(4,cab_fwd upper};
polyi(4,cab_fwd ovhd);
polyi(4.cab_rt_lower);
polyi(4,cab_rt_upper);
polyi(4,cab_rt_ovhd);
polyi(4,cab It lower);
polyi(4,cab_It_upper);
polyi(4,cab_lt_ovhd);
closeobj(} ;

eve=genobj{) : /* contruct the radar (eye)*/
makeobj(eye) ;

color(RED);

polfi(4.scanner fwd upper);

polfi(4.scanner fwd lower);

polfi(5,scanner rt);

polfi(5,scanner It);

polfi(4,scanner_aft):

color(BLACK) ;
polfi(4,scanner_top);

color(BLUE) ;

closeobj() ;
walker|0l=genobj(); /* assemble all the parts for quad I */
makeobj(walker|0)); /* back and right first */

callobj(leg(8](0');
callobj(legl4][0));
callobj(leg|2](0°);
callobj(body);
callobj(head);
callobj(eye);
callobj(leg|{51(0');
callobj(leg|3i[0');
callobj(leg|11{0');
closeobj() ;




/* conwalk.c */

walker|1]=genobj();
makeobj(walker|1i);
callobj(leg|2][1));
callobj(leg|4][1]);
callobj(leg(8]{1]);
callobj(head);
callobj(eye);
callobj(body};
callobj(leg!1][1]):
callobj(leg|3][1]);
callobj(leg{5](1]);

walker|2|=genobj(};
makeobj(walker{2|):
callobj(leg!1][2]);
callobj(leg|3](2]);
callobj(leg|5}|2]);
callobj(head);
callobj(eye);
callobj(body);
callobj(leg|2]|2]);
callobj(leg(4]{2]):
callobj(leg]8][2]);

walker|3]=genobj();
makeobj(walker{3}};
callobj(leg'5}3]);
callobj(leg:3]|3]):
callobj(legi1][3]);
callobj(body});
callobj(head):
callobj(eye):
callobj(leg!(6)(3]);
callobj(leg(4](3]);
callobj(leg|2]|3]);

/* assemble all the parts for quad 11 */

/* front and right first */

/* assemble all the parts for quad I11*/
/* front and left first */

/* assemble all the parts for quad IV */
/* back and left first */
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/* conwalk.c */

/tt#tttt*t#tltlﬁ*t##It#‘**ttt*#****i*ﬁ*#*t****#it**#*i**txt#***#*tt*t*/
’

buildthigh{n legnum,d1,alpha,thighobj .thighmovetag)

/* this function constructs the thigh (upper link) and rotates, then
translates it into the proper position */

. Tag thighmovetag|]{2](4);
int n,legnum d1j] ;
Angle alpha|] ;
Object thighobj||12]i4;

static int
thighltside(4][3/={{0,10,7},{102,10,7},{102,10,-7},{0,10,-7} },
thighrtside|[4](3{={{0,-10,-7},{102,-10,-7},{102,-10,7},{0.-10,7} },
thighfront|4{[3]={{0,-10,7},{102,-10,7},{102,10,7},{0,10,7}} .
thighbttm|4]{3}={{0,10,-7},{102,10,-7},{102,-10,-7},{0.-10,-7} };

thighobj{legnum|0:{n'=genobj();
makeobj(thighobj(legnum![0]{n]);

pushmatrix() ;

thighmovetag/legnumii0][n]=gentag(); /* rotate thigh */
maketag(thighmovetag legnum;i0j|n});
rotaie{alphajlegnum|,’Y’) ;

- if(legnum -4) . * Build the left side first. */
{
color{CYAN);
polfi{4,thighbttm);
polfi(4.thighltside);
polfi(4,thighrtside};

color(RED);
polfi(4,thighfront);

color(BLACK);
polyi(4,thighrtside};




/™ conwalk.c */

else /* Build the right side first. *,

{
color(CYAN);

polfi(4,thighbttm); -
polfi(4,thighrtside);
polfi(4,thighltside};

color(RED);
polfi(4,thighfront);

color(BLACK);
polyi(4,thighltside);
}
popmatrix() ;

closeobj() ;

thighobj{legnumi[1)/n]=genobj() ;
makeobj(thighobjilegnumii1|[n]) ;

pushmatrix() ;
thighmovetag|legnum|{1]'n|=gentag();
maketag(thighmovetag{legnum|[1]in}); /* translate thigh */

translate(0.0,0.0,(float)(-d1{legnum])) ;

callobj(thighobj legnum]|0][n]); -
popmatrix() ;

closeobj(} ;



/* conwalk.c */

/t‘*t‘*t“‘tttt*#**i*it*t#tt*#*I*t**i#tt**#t*tlt***t*t****l‘ttt*l#*ttt ¢

buildactuator{n,legnum.d2.alpha.actuatorobj,actmovetag)
/* construct the actuator (lower link) */
Tag actmovetag||(2][4];
int n Jegnum,d2|};
Angle alpha|j;
Object actuatorobj||[2]]4];
static int actltside|[4]|3|={{0,10,5},{83,10,5},{83,10,-5},{0,10,-5}},
actfront[4][3/={{0,-10,5},{83,-10,5},{83.10.5},{0.10,5}}

actrtside(4](3]={{0,-10,-5},{83-10,-5},{83.-10,5},{0,-10,5} }.
actbtem|4]{3]={{0,10,-5},{83,10,-5},{83,-10,-5},{0,-10,-5}} :

actuatorobj/legnum] 0]|n=genobj();
makeobj(actuatorobj'legnum}[0j{n’);

pushmatrix():

actmovetag legnum|.0/{n;=gentag(};
maketag(actmovetagilegnum|/0}[n]); /* rotate actuator */
rotate(alphailegnum},’Y’) ;

if(legnum>4) /* Build the left side first. */

color(CYAN);

polfi(4,actbttm);
polfi(4,actitside);
polfi(4,actrtside);

color(RED);
polfi(4,actfront);

color(BLACK);
polyi{4,actrtside);
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/* conwalk.c */

else /* Build the right side first. */

{
color(CYAN);
polfi(4,actbtitm);
polfi(4,actriside);
polfi(4.actitside);

color(RED);
polfi(4,actfront);

color(BLACK);
polyi(4,actltside);
}
popmatrix();
closeobj();

actuatorobj{legnum|[1i{ni=genobj();
makeobj(actuatorobj|legnum}|1i[nj);

pushmatrix():
actmovetag/legnum||1][n;=gentag();
maketag(actmovetag|legnum]|(1}n|); /* translate actuator */
translate((floatj(d2!legnum|),0.0,(float)(-L3));
callobj(actuatorobj|legnum|[0]/n});

popmatrix(};

closeobj();
} /* end of buildactuator */
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/* conwalk.c */

/*“*tttt****t*ﬂ‘**tt*tt*t*t**t*tt**t*#ttttt#‘tlt*t*1**#&‘*#“‘#““&“‘:‘ i
!

buildshin{n,legnum knee,gamma shinobj,shinmovetag)

“ /* construct the shank (shin ) */

Tag shinmovetag||(2]/4 :

. int n,legnum kneej};2};
Angle gammal};
Object shinobj|} ' 2!|4];
{

static int

shinltside{6|/3{={{6,5.3},{10,5,-59},{-7,5,-50},{-6.5,3},{-3,5.6},{3.,5.6} },
shankltside 4]{31={{10,5,-59},{-23,5,-102},{-386,5,-100},{-7,5,-50} } ,
shinfront'4]{3.={{6,5,3},{6,-5,3},{10.-5,-59},{10,5,-59} },
shankfront{4/(3]={{10,-5,-59}.{-23,-5,-102} ,{-23,5,-102},{7,5,-59} },
ankleltside(6 [8|={{-28.5,-102},{3,5,-158},{2,5,-157} ,{-3,5,-158},{-6.,5.- 158} ,{-36,5,-100} },
shinrtside'8]!3)={{3,-5,6},{-3.-5,8}.{-6,-5.3},{-7.-5.-50}.{10,-5,-60} ,{6,-5,3} },
shankrtside|4][3]={{-7,-5,-50}.{-36,-5,-100} ,{-23,-5,-102},{10,-5.-59} } ,
anklertside(6]|3|={{-36,-5,-100},{-6,-5.-158} ,{-3,-5.-158},{2,-5,-157}.{3,-5,-153}.{-23.-5.-102} }.
anklefront}4]|3]={{-23,5.-102},{-23,-5,-102},{8,-5.-153},{3.5,-153} }.
shinback/4)/8]={{-7,-5,-50},{-6,-5,3}.{-6,5,3}.{-7,5,-50} },
shankback(4![3={{-36,-5,-100} {-7,-5,-50} ,{-7,5,-50},{-36,5.-100} },
ankleback|4][3i={{-6,-5,-158},{-36,-5,-100},{-36.5,-100},{-8,5,-158} },

J bottom fwd!4!({8}={{3,5.-158},{2, 5.-157},{2,-5,-157},{3,-5.-153} },
bottom midi4|(3;={{2,5,-157},{-8,5,-158},{-3,-5,-158},{2.-5,-157} },
bottom_aft(4](3{={{-3,5158},{-6,5-158),{-6,-5,-158},{-3,-5,-158} };

- shinobj|legnum|[0}[n]=genobj();
makeobj(shinobjlegnum||0iin});
pushmatrix() ;

shinmovetag legnum|(0j n|=gentag(};
maketag(shinmovetag{legnum|(0j(n]); /* rotate shank */
rotate(gammajlegnum},’Y’);

if(legnum>4) /* Build the left side first. */
{

color(BLACK);

polfi(4,bottom fwd);

polfi(4,bottom _mid);

polfi{4,bottom_aft);

color(CYAN]);

polfi(4,ankleback);
Y polfi(6,ankleltside);

polfi{6,anklertside);

color(RED);
polfi(4,ankiefront) ;




/* conwalk.c */

color(CYAN);

polfi(4.shankback) :

polfi(4,shankltside);

polfi(4,shankrtside); -

color(RED);
polfi(4.shankfront) ; N

color(CYAN);
polfi(4.shinback);
polfi(6,shinltside);
polfi(6,shinrtside);

color(RED);
polfi(4.shinfront) ;

color(BLACK):
polyi{6,ankiertside);
polyi(4.shankrtside}:
polyi(6.shinrtside);

!
else /* Build the right side first. */
{
color{BLACK); S

polfi(4.bottom fwd) ;
polfi(4,bottom _mid) ;
polfi(4,bottom _aft) ;

color(CYAN);
polfi(4,ankleback);
polfi(6,anklertside);
polfi(6,ankleltside);

color(RED);
polfi(4.anklefront);

color(CYAN);

polfi(4,shankback) ;
polfi(4,shankreside);
polfi(4,shankltside);

color(RED);
polfi(4,shankfront);

color{CYAN]);
polfi(4.shinback);
polfi(6.shinrtside);
polfi(6,shinltside);




/* conwalk.c */

color(RED);
polfi{4,shinfront):

color(BLACK);
polyi(8,ankleltside);
polyi(4,shankitside);
polyi(6,shinltside);

}
color(BLACK);

pushmatrix();
rotate(-900,'X’);
translate(0.0,0.0,5.0);
circf(0.0,0.0,7.0) ;
ciref(0.0,32.0.5.0) :
popmatrix():
pushmatrix();
rotate(900.’X’);
translate{0.0,0.0,5.0};
ciref(0.0,0.0,7.0) ;
circef(0.0,-32.0,5.0) ;
popmatrix();

popmatrix();
closeobj(};

shinobjilegnum||1][nj=genobj();
makeobj(shinobj|legnum||1][n]};

pushmatrix();

shinmovetag(legaum|[1][n]=gentag();

maketag(shinmovetag|legnum|(1][n]); /* translate shank */
translate((float)knee(legnum|(0],0.0,(float)knee{legnum|{1]) ;
callobj(shinobjilegnum|(0]{n]);

popmatrix(};
closeobj();

} /* end of buildshin */
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/!#***#*t*tt#*ttt*t*i***t#t##tﬁ*!t**tlt#t**t*t**t*t*tttt#ttt#:t'

This is a function for the iris2400 program walk.c.
toolbox.c

Relle Lyman 25 Aug 1986

t**tt*ttt*#t‘tt“t‘tt**tttﬂ*#t*tl‘tttttt**t#tttltttl#tt#*tlt*t#/

#include "gi.h"
#include "device.h"
#include "walk.h"
#include <stdio.h>
#include <math.h>

/ttttt**t*t#**‘.‘*ltitt**tt‘t‘tt“‘l‘tt‘t“‘t“t**tttttt#tt#*tttt‘tttt****ttt/

transform_point(p2,m,pl,i)

/* This function changes the coordinate system for a point vector
using a homogeneous transformation submatrix. p2=m *pl */

int i /* Leg number */
float m{4|{4]; /* Homogeneous transformation submatrix */

vector pl{7], /* Vector represented in first coordinate system */
p2(7}; /* Vector represented in transformed coordinate system */

p2ii].x = m|[0}(0!*p1{i].x + m 0][1]*p1[i].y + m|0]|2]*p1[i].z + m]|O|[S};
p2iily = m(1][0]*p1]il.x + m 1){1]*p1[il.y + m|1][2]*p1[i}.2 + m[1]3};
p2il.z = m'2]{0]*plli|.x + m{2|[1]*ptii].y + m{2}{2}*p1iil.z + m|2{|8};

} /* end of transform point */
/i‘t‘*“****“**““‘**t*ﬁ**********‘**#********‘***#******#i*i*‘**tt*t“‘#t‘/

/
float modulus _one(temp)

/* This function performs the modulus one operation on numbers of type float. */

float temp;

{

while (temp >= 1.0)
temp -= 1.0;

while (temp < 0.0)
temp += 1.0;

}

return temp:
} /* end of modulus_one */



/* Makefile *,

# This is Makefile. It is used in the utility make to speed
# compilation of walk.c. To use it, just type "make". *1

CFLAGS = -2f -Zg -g

SRCS =  walk.c
conwalk.c
support.c
toolbox.c
steering.c
body rates.c
ft_traj.c
opt_period.c
leg phase.c
con_work vol.c
driver.c
status.c
decelerate.c
init.c

OBJS = walk.o
conwalk.o
support.o
toolbox.o
steering.o
body rates.o
ft_traj.o
opt_period.o
leg phase.o
con_work vol.o
driver.o
status.o
decelerate.o
init.o

walk : (OBIJS)
cc -o walk (OBJS) -Zg -Zf

(OBJS):  walk.h
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